These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37902731)

  • 1. Asymmetry-Enhanced Motion of Urease-Powered Micromotors from Double Emulsion-Templated Microcapsules.
    O'Callaghan JA; Lee D; Hammer DA
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37902731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors.
    Valles M; Pujals S; Albertazzi L; Sánchez S
    ACS Nano; 2022 Apr; 16(4):5615-5626. PubMed ID: 35341250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors.
    Arqué X; Andrés X; Mestre R; Ciraulo B; Ortega Arroyo J; Quidant R; Patiño T; Sánchez S
    Research (Wash D C); 2020; 2020():2424972. PubMed ID: 32803169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Enzyme Quantity and Distribution on the Self-Propulsion of Non-Janus Urease-Powered Micromotors.
    Patiño T; Feiner-Gracia N; Arqué X; Miguel-López A; Jannasch A; Stumpp T; Schäffer E; Albertazzi L; Sánchez S
    J Am Chem Soc; 2018 Jun; 140(25):7896-7903. PubMed ID: 29786426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery.
    Tang S; Zhang F; Gong H; Wei F; Zhuang J; Karshalev E; Esteban-Fernández de Ávila B; Huang C; Zhou Z; Li Z; Yin L; Dong H; Fang RH; Zhang X; Zhang L; Wang J
    Sci Robot; 2020 Jun; 5(43):. PubMed ID: 33022613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Urease-Powered Black TiO
    Amiri Z; Hasani A; Abedini F; Malek M; Madaah Hosseini HR
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):3019-3030. PubMed ID: 38217858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Urease-Powered Micromotors with Spatially Selective Distribution of Enzymes for Capturing and Sensing Exosomes.
    Liu X; Wang Y; Peng Y; Shi J; Chen W; Wang W; Ma X
    ACS Nano; 2023 Dec; 17(23):24343-24354. PubMed ID: 38038995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic enzymatic properties modulate the self-propulsion of micromotors.
    Arqué X; Romero-Rivera A; Feixas F; Patiño T; Osuna S; Sánchez S
    Nat Commun; 2019 Jun; 10(1):2826. PubMed ID: 31249381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.
    Ma X; Wang X; Hahn K; Sánchez S
    ACS Nano; 2016 Mar; 10(3):3597-605. PubMed ID: 26863183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Propulsion of Urease-Powered Micromotors by Multilayered Assembly of Ureases on Janus Magnetic Microparticles.
    Luo M; Li S; Wan J; Yang C; Chen B; Guan J
    Langmuir; 2020 Feb; ():. PubMed ID: 32023066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Micromotors with Droplet Microfluidics.
    Zhou C; Zhu P; Tian Y; Xu M; Wang L
    ACS Nano; 2019 Jun; 13(6):6319-6329. PubMed ID: 31091410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromotors Powered by Enzyme Catalysis.
    Dey KK; Zhao X; Tansi BM; Méndez-Ortiz WJ; Córdova-Figueroa UM; Golestanian R; Sen A
    Nano Lett; 2015 Dec; 15(12):8311-5. PubMed ID: 26587897
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication strategy for amphiphilic microcapsules with narrow size distribution by premix membrane emulsification.
    Wei Y; Wang Y; Wang L; Hao D; Ma G
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):399-408. PubMed ID: 21683559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photothermal interference urease-powered polydopamine nanomotor for enhanced propulsion and synergistic therapy.
    Wu M; Liu S; Liu Z; Huang F; Xu X; Shuai Q
    Colloids Surf B Biointerfaces; 2022 Apr; 212():112353. PubMed ID: 35085936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogel micromotors with catalyst-containing liquid core and shell.
    Zhu H; Nawar S; Werner JG; Liu J; Huang G; Mei Y; Weitz DA; Solovev AA
    J Phys Condens Matter; 2019 May; 31(21):214004. PubMed ID: 30777936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery.
    Pessi J; Santos HA; Miroshnyk I; JoukoYliruusi ; Weitz DA; Mirza S
    Int J Pharm; 2014 Sep; 472(1-2):82-7. PubMed ID: 24928131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motion of Enzyme-Powered Microshell Motors.
    Chen C; He Z; Wu J; Zhang X; Xia Q; Ju H
    Chem Asian J; 2019 Jul; 14(14):2491-2496. PubMed ID: 31087617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing surface-bound enzymatic reactions to organize microcapsules in solution.
    Shklyaev OE; Shum H; Sen A; Balazs AC
    Sci Adv; 2016 Mar; 2(3):e1501835. PubMed ID: 27034990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial Control over Catalyst Positioning for Increased Micromotor Efficiency.
    Keller S; Teora SP; Keskin A; Daris LJC; Samuels NAPE; Boujemaa M; Wilson DA
    Gels; 2023 Feb; 9(2):. PubMed ID: 36826334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety of poly (ethylene glycol)-coated perfluorodecalin-filled poly (lactide-co-glycolide) microcapsules following intravenous administration of high amounts in rats.
    Ferenz KB; Waack IN; Laudien J; Mayer C; Broecker-Preuss M; Groot Hd; Kirsch M
    Results Pharma Sci; 2014; 4():8-18. PubMed ID: 25756002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.