These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 37902763)
1. Fiber chromatographic enabled process intensification increases monoclonal antibody product yield. Anderson SM; Seto E; Chau D; Lee B; Vail A; Ding S; Voloshin A; Nagel M Biotechnol Bioeng; 2024 Feb; 121(2):757-770. PubMed ID: 37902763 [TBL] [Abstract][Full Text] [Related]
2. Investigating the combination of single-pass tangential flow filtration and anion exchange chromatography for intensified mAb polishing. Elich T; Goodrich E; Lutz H; Mehta U Biotechnol Prog; 2019 Sep; 35(5):e2862. PubMed ID: 31168950 [TBL] [Abstract][Full Text] [Related]
3. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
4. Concentration of clarified pool by single-pass tangential flow filtration to improve productivity of protein A capture step: Impact of clarification strategies. Rahane SB; Gupta A; Szymanski P; Kinzlmaier D; McGee P; Goodrich E Biotechnol Bioeng; 2024 Mar; 121(3):1090-1101. PubMed ID: 38151902 [TBL] [Abstract][Full Text] [Related]
5. Transfer of a three step mAb chromatography process from batch to continuous: Optimizing productivity to minimize consumable requirements. Gjoka X; Gantier R; Schofield M J Biotechnol; 2017 Jan; 242():11-18. PubMed ID: 27939321 [TBL] [Abstract][Full Text] [Related]
6. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. Xu J; Xu X; Huang C; Angelo J; Oliveira CL; Xu M; Xu X; Temel D; Ding J; Ghose S; Borys MC; Li ZJ MAbs; 2020 Jan; 12(1):1770669. PubMed ID: 32425110 [TBL] [Abstract][Full Text] [Related]
7. Development of adsorptive hybrid filters to enable two-step purification of biologics. Singh N; Arunkumar A; Peck M; Voloshin AM; Moreno AM; Tan Z; Hester J; Borys MC; Li ZJ MAbs; 2017; 9(2):350-363. PubMed ID: 27929735 [TBL] [Abstract][Full Text] [Related]
8. Pilot-scale process for magnetic bead purification of antibodies directly from non-clarified CHO cell culture. Brechmann NA; Eriksson PO; Eriksson K; Oscarsson S; Buijs J; Shokri A; Hjälm G; Chotteau V Biotechnol Prog; 2019 May; 35(3):e2775. PubMed ID: 30629859 [TBL] [Abstract][Full Text] [Related]
9. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification. Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630 [TBL] [Abstract][Full Text] [Related]
10. Enhancing Protein A performance in mAb processing: A method to reduce and rapidly evaluate host cell DNA levels during primary clarification. Koehler KC; Jokondo Z; Narayan J; Voloshin AM; Castro-Forero AA Biotechnol Prog; 2019 Nov; 35(6):e2882. PubMed ID: 31276322 [TBL] [Abstract][Full Text] [Related]
11. Behavior of host-cell-protein-rich aggregates in antibody capture and polishing chromatography. Herman CE; Min L; Choe LH; Maurer RW; Xu X; Ghose S; Lee KH; Lenhoff AM J Chromatogr A; 2023 Aug; 1702():464081. PubMed ID: 37244165 [TBL] [Abstract][Full Text] [Related]
12. Chromatographic clarification overcomes chromatin-mediated hitch-hiking interactions on Protein A capture column. Van de Velde J; Saller MJ; Eyer K; Voloshin A Biotechnol Bioeng; 2020 Nov; 117(11):3413-3421. PubMed ID: 32706389 [TBL] [Abstract][Full Text] [Related]
13. [Optimization and application of caprylic acid precipitation in the purification of monoclonal antibody]. Yang Z; Zhou J Sheng Wu Gong Cheng Xue Bao; 2023 Sep; 39(9):3757-3771. PubMed ID: 37805852 [TBL] [Abstract][Full Text] [Related]
14. A simple and efficient purification platform for monoclonal antibody production based on chromatin-directed cell culture clarification integrated with precipitation and void-exclusion anion exchange chromatography. Chen Q; Abdul Latiff SM; Toh P; Peng X; Hoi A; Xian M; Zhang H; Nian R; Zhang W; Gagnon P J Biotechnol; 2016 Oct; 236():128-40. PubMed ID: 27568167 [TBL] [Abstract][Full Text] [Related]
15. Identification and characterization of co-purifying CHO host cell proteins in monoclonal antibody purification process. Liu X; Chen Y; Zhao Y; Liu-Compton V; Chen W; Payne G; Lazar AC J Pharm Biomed Anal; 2019 Sep; 174():500-508. PubMed ID: 31234041 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of protein a chromatography ligands with polyethylene glycol. II: Effects on resin robustness and process selectivity. Weinberg J; Zhang S; Kirkby A; Shachar E; Carta G; Przybycien T J Chromatogr A; 2018 Apr; 1546():89-96. PubMed ID: 29551237 [TBL] [Abstract][Full Text] [Related]
17. Advance chromatin extraction enhances performance and productivity of cation exchange chromatography-based capture of Immunoglobulin G monoclonal antibodies. Nian R; Gagnon P J Chromatogr A; 2016 Jul; 1453():54-61. PubMed ID: 27247214 [TBL] [Abstract][Full Text] [Related]
18. Non-protein A purification platform for continuous processing of monoclonal antibody therapeutics. Kateja N; Kumar D; Sethi S; Rathore AS J Chromatogr A; 2018 Dec; 1579():60-72. PubMed ID: 30430988 [TBL] [Abstract][Full Text] [Related]
19. Chromatographic capture of cells to achieve single stage clarification in recombinant protein purification. Almeida A; Chau D; Coolidge T; El-Sabbahy H; Hager S; Jose K; Nakamura M; Voloshin A Biotechnol Prog; 2022 Mar; 38(2):e3227. PubMed ID: 34854259 [TBL] [Abstract][Full Text] [Related]
20. Caprylic acid-induced impurity precipitation from protein A capture column elution pool to enable a two-chromatography-step process for monoclonal antibody purification. Zheng J; Wang L; Twarowska B; Laino S; Sparks C; Smith T; Russell R; Wang M Biotechnol Prog; 2015; 31(6):1515-25. PubMed ID: 26280674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]