These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 37902817)
1. Advanced Synthetic Scaffolds Based on 1D Inorganic Micro-/Nanomaterials for Bone Regeneration. Zhang Y; Zhu Y; Habibovic P; Wang H Adv Healthc Mater; 2024 Feb; 13(5):e2302664. PubMed ID: 37902817 [TBL] [Abstract][Full Text] [Related]
2. 3D printing of inorganic-biopolymer composites for bone regeneration. van der Heide D; Cidonio G; Stoddart MJ; D'Este M Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36007496 [TBL] [Abstract][Full Text] [Related]
3. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics. Yun HS; Kim SH; Khang D; Choi J; Kim HH; Kang M Int J Nanomedicine; 2011; 6():2521-31. PubMed ID: 22072886 [TBL] [Abstract][Full Text] [Related]
4. Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration. Putra NE; Borg KGN; Diaz-Payno PJ; Leeflang MA; Klimopoulou M; Taheri P; Mol JMC; Fratila-Apachitei LE; Huan Z; Chang J; Zhou J; Zadpoor AA Acta Biomater; 2022 Aug; 148():355-373. PubMed ID: 35690326 [TBL] [Abstract][Full Text] [Related]
5. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration. He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161 [TBL] [Abstract][Full Text] [Related]
6. Development of novel silk fibroin/polyvinyl alcohol/sol-gel bioactive glass composite matrix by modified layer by layer electrospinning method for bone tissue construct generation. Singh BN; Pramanik K Biofabrication; 2017 Mar; 9(1):015028. PubMed ID: 28332482 [TBL] [Abstract][Full Text] [Related]
7. Biomineralization-Inspired Material Design for Bone Regeneration. de Melo Pereira D; Habibovic P Adv Healthc Mater; 2018 Nov; 7(22):e1800700. PubMed ID: 30240157 [TBL] [Abstract][Full Text] [Related]
8. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Tang W; Lin D; Yu Y; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Mar; 32():309-323. PubMed ID: 26689464 [TBL] [Abstract][Full Text] [Related]
9. Design strategies and applications of nacre-based biomaterials. Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
11. Development of nanomaterials for bone repair and regeneration. McMahon RE; Wang L; Skoracki R; Mathur AB J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):387-97. PubMed ID: 23281143 [TBL] [Abstract][Full Text] [Related]
12. The effect of biomimetic coating and cuttlebone microparticle reinforcement on the osteoconductive properties of cellulose-based scaffolds. Palaveniene A; Songailiene K; Baniukaitiene O; Tamburaci S; Kimna C; Tihminlioğlu F; Liesiene J Int J Biol Macromol; 2020 Jun; 152():1194-1204. PubMed ID: 31759022 [TBL] [Abstract][Full Text] [Related]
13. Polymeric nanofibrous scaffolds laden with cell-derived extracellular matrix for bone regeneration. Junka R; Yu X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110981. PubMed ID: 32487395 [TBL] [Abstract][Full Text] [Related]
14. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
15. Mineralization in micropores of calcium phosphate scaffolds. Rustom LE; Poellmann MJ; Wagoner Johnson AJ Acta Biomater; 2019 Jan; 83():435-455. PubMed ID: 30408560 [TBL] [Abstract][Full Text] [Related]
16. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
17. Nanobiomaterials: from 0D to 3D for tumor therapy and tissue regeneration. Liu Y; Yu Q; Chang J; Wu C Nanoscale; 2019 Aug; 11(29):13678-13708. PubMed ID: 31292580 [TBL] [Abstract][Full Text] [Related]
18. [Preparation and Lan Y; Zhang J; Ran Y; Li B; Cai X; Jiang T; Xue D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Jun; 38(6):755-762. PubMed ID: 38918199 [TBL] [Abstract][Full Text] [Related]
19. Recent advances in PLGA-based biomaterials for bone tissue regeneration. Jin S; Xia X; Huang J; Yuan C; Zuo Y; Li Y; Li J Acta Biomater; 2021 Jun; 127():56-79. PubMed ID: 33831569 [TBL] [Abstract][Full Text] [Related]
20. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]