These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 37902817)
21. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Zhou B; Jiang X; Zhou X; Tan W; Luo H; Lei S; Yang Y Biomater Res; 2023 Sep; 27(1):86. PubMed ID: 37715230 [TBL] [Abstract][Full Text] [Related]
22. Micro and nanotechnologies for bone regeneration: Recent advances and emerging designs. Mohammadi M; Mousavi Shaegh SA; Alibolandi M; Ebrahimzadeh MH; Tamayol A; Jaafari MR; Ramezani M J Control Release; 2018 Mar; 274():35-55. PubMed ID: 29410062 [TBL] [Abstract][Full Text] [Related]
23. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
24. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
25. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Yu H; Xu M; Duan Q; Li Y; Liu Y; Song L; Cheng L; Ying J; Zhao D Biomed Mater; 2024 May; 19(4):. PubMed ID: 38697199 [TBL] [Abstract][Full Text] [Related]
26. 3D Printing of Micro- and Nanoscale Bone Substitutes: A Review on Technical and Translational Perspectives. Cheng L; Suresh K S; He H; Rajput RS; Feng Q; Ramesh S; Wang Y; Krishnan S; Ostrovidov S; Camci-Unal G; Ramalingam M Int J Nanomedicine; 2021; 16():4289-4319. PubMed ID: 34211272 [TBL] [Abstract][Full Text] [Related]
27. Ex Vivo and In Vivo Analyses of Novel 3D-Printed Bone Substitute Scaffolds Incorporating Biphasic Calcium Phosphate Granules for Bone Regeneration. Oberdiek F; Vargas CI; Rider P; Batinic M; Görke O; Radenković M; Najman S; Baena JM; Jung O; Barbeck M Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808303 [TBL] [Abstract][Full Text] [Related]
28. Recent advances in biological macromolecule based tissue-engineered composite scaffolds for cardiac tissue regeneration applications. Chandika P; Heo SY; Kim TH; Oh GW; Kim GH; Kim MS; Jung WK Int J Biol Macromol; 2020 Dec; 164():2329-2357. PubMed ID: 32795569 [TBL] [Abstract][Full Text] [Related]
29. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes. Kang HJ; Makkar P; Padalhin AR; Lee GH; Im SB; Lee BT Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110694. PubMed ID: 32204008 [TBL] [Abstract][Full Text] [Related]
30. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects. Anitha A; Joseph J; Menon D; Nair SV; Nair MB Tissue Eng Part A; 2017 Apr; 23(7-8):345-358. PubMed ID: 28093043 [TBL] [Abstract][Full Text] [Related]
31. Is extracellular matrix (ECM) a promising scaffold biomaterial for bone repair? Gu R; Liu H; Zhu Y; Liu X; Wang S; Liu Y Histol Histopathol; 2021 Dec; 36(12):1219-1234. PubMed ID: 34472621 [TBL] [Abstract][Full Text] [Related]
32. The Use of Collagen-Based Materials in Bone Tissue Engineering. Fan L; Ren Y; Emmert S; Vučković I; Stojanovic S; Najman S; Schnettler R; Barbeck M; Schenke-Layland K; Xiong X Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36835168 [TBL] [Abstract][Full Text] [Related]
33. Current advances in anisotropic structures for enhanced osteogenesis. Chen J Colloids Surf B Biointerfaces; 2023 Nov; 231():113566. PubMed ID: 37797464 [TBL] [Abstract][Full Text] [Related]
34. Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration. Eilbagi M; Emadi R; Raeissi K; Kharaziha M; Valiani A Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():603-612. PubMed ID: 27524060 [TBL] [Abstract][Full Text] [Related]
35. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Ansari MAA; Golebiowska AA; Dash M; Kumar P; Jain PK; Nukavarapu SP; Ramakrishna S; Nanda HS Biomater Sci; 2022 May; 10(11):2789-2816. PubMed ID: 35510605 [TBL] [Abstract][Full Text] [Related]
36. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration. Bharadwaz A; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012 [TBL] [Abstract][Full Text] [Related]
37. Smart, Elastic, and Nanofiber-Based 3D Scaffolds with Self-Deploying Capability for Osteoporotic Bone Regeneration. Wang L; Qiu Y; Guo Y; Si Y; Liu L; Cao J; Yu J; Li X; Zhang Q; Ding B Nano Lett; 2019 Dec; 19(12):9112-9120. PubMed ID: 31765166 [TBL] [Abstract][Full Text] [Related]
38. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies. Veronesi F; Giavaresi G; Guarino V; Raucci MG; Sandri M; Tampieri A; Ambrosio L; Fini M J Biomed Mater Res A; 2015 Sep; 103(9):2932-41. PubMed ID: 25689266 [TBL] [Abstract][Full Text] [Related]
39. Microbially Catalyzed Biomaterials for Bone Regeneration. Li M; Ma H; Han F; Zhai D; Zhang B; Sun Y; Li T; Chen L; Wu C Adv Mater; 2021 Dec; 33(49):e2104829. PubMed ID: 34632631 [TBL] [Abstract][Full Text] [Related]
40. Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration. Ma Y; Hu N; Liu J; Zhai X; Wu M; Hu C; Li L; Lai Y; Pan H; Lu WW; Zhang X; Luo Y; Ruan C ACS Appl Mater Interfaces; 2019 Mar; 11(9):9415-9424. PubMed ID: 30698946 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]