These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37902963)

  • 1. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.
    Abedi M; Behler J; Goldsmith CF
    J Chem Theory Comput; 2023 Nov; 19(21):7825-7832. PubMed ID: 37902963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments.
    Zaverkin V; Holzmüller D; Steinwart I; Kästner J
    J Chem Theory Comput; 2021 Oct; 17(10):6658-6670. PubMed ID: 34585927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of thermodynamic state variables of liquids from their microscopic structures using an artificial neural network.
    Que-Salinas U; Ramírez-González PE; Torres-Carbajal A
    Soft Matter; 2021 Feb; 17(7):1975-1984. PubMed ID: 33427848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L; Thomsen K; von Solms N; Wierzchowski S; Walsh MR; Koh CA; Sloan ED; Wu DT; Sum AK
    J Phys Chem B; 2010 May; 114(17):5775-82. PubMed ID: 20392117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transferable Water Potentials Using Equivariant Neural Networks.
    Maxson T; Szilvási T
    J Phys Chem Lett; 2024 Apr; 15(14):3740-3747. PubMed ID: 38547514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new approach for the prediction of partition functions using machine learning techniques.
    Desgranges C; Delhommelle J
    J Chem Phys; 2018 Jul; 149(4):044118. PubMed ID: 30068165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First-principles molten salt phase diagrams through thermodynamic integration.
    Shah T; Fazel K; Lian J; Huang L; Shi Y; Sundararaman R
    J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer learning for chemically accurate interatomic neural network potentials.
    Zaverkin V; Holzmüller D; Bonfirraro L; Kästner J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5383-5396. PubMed ID: 36748821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Committee neural network potentials control generalization errors and enable active learning.
    Schran C; Brezina K; Marsalek O
    J Chem Phys; 2020 Sep; 153(10):104105. PubMed ID: 32933264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine-Learning Accelerated First-Principles Accurate Modeling of the Solid-Liquid Phase Transition in MgO under Mantle Conditions.
    Wisesa P; Andolina CM; Saidi WA
    J Phys Chem Lett; 2023 Oct; 14(39):8741-8748. PubMed ID: 37738009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equation of State of Fluid Methane from First Principles with Machine Learning Potentials.
    Veit M; Jain SK; Bonakala S; Rudra I; Hohl D; Csányi G
    J Chem Theory Comput; 2019 Apr; 15(4):2574-2586. PubMed ID: 30794393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applicability research of thermodynamic models of gas hydrate phase equilibrium based on different equations of state.
    Zhang G; Li J; Liu G; Yang H; Huang H
    RSC Adv; 2022 May; 12(25):15870-15884. PubMed ID: 35685713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accuracy, transferability, and computational efficiency of interatomic potentials for simulations of carbon under extreme conditions.
    Willman JT; Gonzalez JM; Nguyen-Cong K; Hamel S; Lordi V; Oleynik II
    J Chem Phys; 2024 Aug; 161(8):. PubMed ID: 39193946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction method of solubility of carbon dioxide and methane during gas invasion in deep-water drilling.
    Sun B; He H; Sun X; Li X; Wang Z
    J Contam Hydrol; 2022 Dec; 251():104081. PubMed ID: 36272377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the reliability of machine learned potentials for modeling inhomogeneous liquids.
    Fazel K; Karimitari N; Shah T; Sutton C; Sundararaman R
    J Comput Chem; 2024 Aug; 45(21):1821-1828. PubMed ID: 38662330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaussian approximation potentials for accurate thermal properties of two-dimensional materials.
    Kocabaş T; Keçeli M; Vázquez-Mayagoitia Á; Sevik C
    Nanoscale; 2023 May; 15(19):8772-8780. PubMed ID: 37098822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.