These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37902963)

  • 21. Predicting vapor-liquid phase equilibria with augmented ab initio interatomic potentials.
    Vlasiuk M; Sadus RJ
    J Chem Phys; 2017 Jun; 146(24):244504. PubMed ID: 28668034
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural Network Water Model Based on the MB-Pol Many-Body Potential.
    Muniz MC; Car R; Panagiotopoulos AZ
    J Phys Chem B; 2023 Oct; 127(42):9165-9171. PubMed ID: 37824703
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ab initio interatomic potentials and the thermodynamic properties of fluids.
    Vlasiuk M; Sadus RJ
    J Chem Phys; 2017 Jul; 147(2):024505. PubMed ID: 28711063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Liquid-Vapor Phase Diagram of RPBE-D3 Water: Electronic Properties along the Coexistence Curve and in the Supercritical Phase.
    Schienbein P; Marx D
    J Phys Chem B; 2018 Apr; 122(13):3318-3329. PubMed ID: 29112439
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical potentials and phase equilibria of Lennard-Jones mixtures: a self-consistent integral equation approach.
    Wilson DS; Lee LL
    J Chem Phys; 2005 Jul; 123(4):044512. PubMed ID: 16095374
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors.
    Tayfuroglu O; Kocak A; Zorlu Y
    Phys Chem Chem Phys; 2022 May; 24(19):11882-11897. PubMed ID: 35510633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular Dynamics Simulations of the Vapor-Liquid Equilibria in CO
    Toutouni R; Kubelka J; Piri M
    J Phys Chem B; 2021 Jun; 125(24):6658-6669. PubMed ID: 34125546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictions of Boron Phase Stability Using an Efficient Bayesian Machine Learning Interatomic Potential.
    Deng H; Liu B
    J Phys Chem Lett; 2024 Mar; 15(9):2419-2427. PubMed ID: 38394626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine learning interatomic potentials for aluminium: application to solidification phenomena.
    Jakse N; Sandberg J; Granz LF; Saliou A; Jarry P; Devijver E; Voigtmann T; Horbach J; Meyer A
    J Phys Condens Matter; 2022 Nov; 51(3):. PubMed ID: 36301702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Machine learning-based modeling of high-pressure phase diagrams: Anomalous melting of Rb.
    Oren E; Kartoon D; Makov G
    J Chem Phys; 2022 Jul; 157(1):014502. PubMed ID: 35803824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials.
    Kondati Natarajan S; Morawietz T; Behler J
    Phys Chem Chem Phys; 2015 Apr; 17(13):8356-71. PubMed ID: 25436835
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li
    Kim K; Dive A; Grieder A; Adelstein N; Kang S; Wan LF; Wood BC
    J Chem Phys; 2022 Jun; 156(22):221101. PubMed ID: 35705400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A machine learning potential for simulating infrared spectra of nanosilicate clusters.
    Tang Z; Bromley ST; Hammer B
    J Chem Phys; 2023 Jun; 158(22):. PubMed ID: 37290080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Line of percolation in supercritical water.
    Pártay L; Jedlovszky P
    J Chem Phys; 2005 Jul; 123(2):24502. PubMed ID: 16050754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Rise of Neural Networks for Materials and Chemical Dynamics.
    Kulichenko M; Smith JS; Nebgen B; Li YW; Fedik N; Boldyrev AI; Lubbers N; Barros K; Tretiak S
    J Phys Chem Lett; 2021 Jul; 12(26):6227-6243. PubMed ID: 34196559
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predicting properties of periodic systems from cluster data: A case study of liquid water.
    Zaverkin V; Holzmüller D; Schuldt R; Kästner J
    J Chem Phys; 2022 Mar; 156(11):114103. PubMed ID: 35317580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graph neural network interatomic potential ensembles with calibrated aleatoric and epistemic uncertainty on energy and forces.
    Busk J; Schmidt MN; Winther O; Vegge T; Jørgensen PB
    Phys Chem Chem Phys; 2023 Sep; 25(37):25828-25837. PubMed ID: 37724552
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A transferable active-learning strategy for reactive molecular force fields.
    Young TA; Johnston-Wood T; Deringer VL; Duarte F
    Chem Sci; 2021 Aug; 12(32):10944-10955. PubMed ID: 34476072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
    Singraber A; Morawietz T; Behler J; Dellago C
    J Chem Theory Comput; 2019 May; 15(5):3075-3092. PubMed ID: 30995035
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.