These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 37903)

  • 21. The effect of electron donors and acceptors on light-induced absorbance changes and photophosphorylation in Rhodospirillum rubrum chromatophores.
    Silberstein BR; Epel BL; Malkin S; Gromet-Elhanan Z
    Eur J Biochem; 1977 Oct; 80(1):135-41. PubMed ID: 411652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Origin of the ATP formed during the light-dependent oxygen uptake catalyzed by Rhodospirillum rubrum chromatophores.
    del Valle-Tascón S; Ramírez JM
    Z Naturforsch C Biosci; 1975; 30(1):46-52. PubMed ID: 47212
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Polyphosphate biosynthesis in Rhodospirillum rubrum chromatophores].
    Shadi A; Mansurova SE; Tsydendambaev VD; Kulaev IS
    Mikrobiologiia; 1976; 45(2):333-6. PubMed ID: 180387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensitive measurement of flash induced photophosphorylation in bacterial chromatophores by firefly luciferase.
    Lundin A; Thore A; Baltscheffsky M
    FEBS Lett; 1977 Jul; 79(1):73-6. PubMed ID: 408188
    [No Abstract]   [Full Text] [Related]  

  • 25. Postillumination adenosine triphosphate synthesis in Rhodospirillum rubrum chromatophores. II. Stimulation by a K+ diffusion potential.
    Gromet-Elhanan Z; Leiser M
    J Biol Chem; 1975 Jan; 250(1):90-3. PubMed ID: 49352
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ratio of protons translocated/hydride ion equivalent transferred by nicotinamide nucleotide transhydrogenase in chromatophores from Rhodospirillum rubrum.
    Bizouarn T; Jackson JB
    Eur J Biochem; 1993 Oct; 217(2):763-70. PubMed ID: 8223619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of photophosphorylation coupling factor in energy conversion by depleted chromatophores of Rhodospirillum rubrum.
    Gromet-Elhanan Z
    J Biol Chem; 1974 Apr; 249(8):2522-7. PubMed ID: 4362685
    [No Abstract]   [Full Text] [Related]  

  • 28. Effect of ferredoxin on bacterial photophosphorylation.
    Shanmugam KT; Arnon DI
    Biochim Biophys Acta; 1972 Feb; 256(2):487-97. PubMed ID: 4622736
    [No Abstract]   [Full Text] [Related]  

  • 29. Light-induced electron transfer, internal and external hydrogen ion changes, and phosphorylation in chromatophores of Rhodospirillum rubrum.
    Nishimura M; Kadota K; Chance B
    Arch Biochem Biophys; 1968 Apr; 125(1):308-17. PubMed ID: 5655426
    [No Abstract]   [Full Text] [Related]  

  • 30. [Photophosphorylation and binding of phosphates to chromatophores in Rhodospirillum rubrum].
    Lutz HU; Bachofen R
    Zentralbl Bakteriol Orig A; 1972 May; 220(1):387-93. PubMed ID: 4145605
    [No Abstract]   [Full Text] [Related]  

  • 31. Involvement of an essential arginyl residue in the coupling activity of Rhodospirillum rubrum chromatophores.
    Vallejos RH; Lescano WI; Lucero HA
    Arch Biochem Biophys; 1978 Oct; 190(2):578-84. PubMed ID: 102254
    [No Abstract]   [Full Text] [Related]  

  • 32. Generation of electric potential by reaction center complexes from Rhodospirillum rubrum.
    Drachev LA; Kondrashin AA; Samuilov VD; Skulachev VP
    FEBS Lett; 1975 Feb; 50(2):219-22. PubMed ID: 803460
    [No Abstract]   [Full Text] [Related]  

  • 33. PMS photo-inhibition in Rhodospirillum rubrum membranes in the presence of permeant entities affecting either the deltapsi or the deltapH components of the protonmotive force.
    Kerber NL; Pucheu NL; García AF
    FEBS Lett; 1978 Oct; 94(2):265-8. PubMed ID: 29789
    [No Abstract]   [Full Text] [Related]  

  • 34. delta pH driven energy-linked NAD+ reduction in Rhodospirillum rubrum chromatophores.
    Nore BF
    Arch Biochem Biophys; 1989 Oct; 274(1):285-9. PubMed ID: 2505679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermodynamics and kinetics of photophosphorylation in bacterial chromatophores and their relation with the transmembrane electrochemical potential difference of protons.
    Baccarini Melandri A; Casadio R; Melandri BA
    Eur J Biochem; 1977 Sep; 78(2):389-402. PubMed ID: 913405
    [No Abstract]   [Full Text] [Related]  

  • 36. [Light-induced oxygen uptake by chromatophores and subchromatophore pigment-protein complexes of Rhodospirillum rubrum].
    Remennikov VG; Samuilov VD
    Biokhimiia; 1977 Nov; 42(11):1997-2004. PubMed ID: 412525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Light-induced pH changes and changes in absorbance of pH indicators in Rhodospirillum rubrum chromatophores.
    Nishi N; Sakata-Sogawa K; Soe G; Yamashita J
    J Biochem; 1977 Nov; 82(5):1267-79. PubMed ID: 22540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation and decomposition of pyrophosphate related to bacterial photophosphorylation.
    Nishikawa K; Hosoi K; Suzuki J; Yoshimura S; Horio T
    J Biochem; 1973 Mar; 73(3):537-53. PubMed ID: 4353266
    [No Abstract]   [Full Text] [Related]  

  • 39. Inhibition of energy conservation reactions in chromatophores of Rhodospirillum rubrum by antibiotics.
    Lucero H; Lescano WI; Vallejos RH
    Arch Biochem Biophys; 1978 Feb; 186(1):9-14. PubMed ID: 147053
    [No Abstract]   [Full Text] [Related]  

  • 40. [Light-dependent uptake of hydrogen ions in chloroplasts and chromatophores: effects of hearing, solvents and detergents].
    Pakshina EV; Shaposhnikova MG; Kraspovskiĭ AA
    Biokhimiia; 1977 Nov; 42(11):1953-9. PubMed ID: 22359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.