BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37903097)

  • 1. Leveraging a smartphone to perform time-gated luminescence measurements.
    Fratto BE; Culver EL; Davis G; Deans R; Goods JB; Hwang S; Keller NK; Lawrence JA; Petty AR; Swager TM; Walish JJ; Zhu Z; Cox JR
    PLoS One; 2023; 18(10):e0293740. PubMed ID: 37903097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A low-cost smartphone-based platform for highly sensitive point-of-care testing with persistent luminescent phosphors.
    Paterson AS; Raja B; Mandadi V; Townsend B; Lee M; Buell A; Vu B; Brgoch J; Willson RC
    Lab Chip; 2017 Mar; 17(6):1051-1059. PubMed ID: 28154873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralong luminescence lifetime imaging of edible plant tissue for humidity sensing in food packaging by a smartphone.
    Chen W; Zhu Z
    Food Chem; 2024 Oct; 454():139778. PubMed ID: 38805918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Intra-Vehicular Wireless Multimedia Sensor Network for Smartphone-Based Low-Cost Advanced Driver-Assistance Systems.
    Fourie CM; Myburgh HC
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of smartphone-based spectroscopy to biosample analysis: A review.
    Chen W; Yao Y; Chen T; Shen W; Tang S; Lee HK
    Biosens Bioelectron; 2021 Jan; 172():112788. PubMed ID: 33157407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of a 3D printed smartphone microscopic system with enhanced imaging ability for biomedical applications.
    Rabha D; Sarmah A; Nath P
    J Microsc; 2019 Oct; 276(1):13-20. PubMed ID: 31498428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial intelligence-assisted smartphone-based sensing for bioanalytical applications: A review.
    Yang Y; Xu F; Chen J; Tao C; Li Y; Chen Q; Tang S; Lee HK; Shen W
    Biosens Bioelectron; 2023 Jun; 229():115233. PubMed ID: 36965381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microsecond-resolved smartphone time-gated luminescence spectroscopy.
    Deng Q; Liu Y; Zhu Z; Shu X
    Opt Lett; 2022 Jul; 47(14):3427-3430. PubMed ID: 35838696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smartphone-based low light detection for bioluminescence application.
    Kim H; Jung Y; Doh IJ; Lozano-Mahecha RA; Applegate B; Bae E
    Sci Rep; 2017 Jan; 7():40203. PubMed ID: 28067287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nicotinamide-Functionalized Carbon Quantum Dot as New Sensing Platform for Portable Quantification of Vitamin B12 in Fluorescence, UV-Vis and Smartphone Triple Mode.
    Dadkhah S; Mehdinia A; Jabbari A; Manbohi A
    J Fluoresc; 2022 Mar; 32(2):681-689. PubMed ID: 35040028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-based optical sensors paired with smartphones for biomedical analysis.
    Karim K; Lamaoui A; Amine A
    J Pharm Biomed Anal; 2023 Feb; 225():115207. PubMed ID: 36584551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smartphone-Based Chemiluminescent Origami µPAD for the Rapid Assessment of Glucose Blood Levels.
    Calabria D; Zangheri M; Trozzi I; Lazzarini E; Pace A; Mirasoli M; Guardigli M
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-Cost Hyperspectral Imaging with A Smartphone.
    Stuart MB; McGonigle AJS; Davies M; Hobbs MJ; Boone NA; Stanger LR; Zhu C; Pering TD; Willmott JR
    J Imaging; 2021 Aug; 7(8):. PubMed ID: 34460772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The smartphone as a platform for wearable cameras in health research.
    Gurrin C; Qiu Z; Hughes M; Caprani N; Doherty AR; Hodges SE; Smeaton AF
    Am J Prev Med; 2013 Mar; 44(3):308-13. PubMed ID: 23415130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of universal 3D-Printed smartphone spectrophotometer to develop a time-based analysis for hypochlorite.
    Vidal E; Lorenzetti AS; Garcia CD; Domini CE
    Anal Chim Acta; 2021 Mar; 1151():338249. PubMed ID: 33608080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining Continuous Smartphone Native Sensors Data Capture and Unsupervised Data Mining Techniques for Behavioral Changes Detection: A Case Series of the Evidence-Based Behavior (eB2) Study.
    Berrouiguet S; Ramírez D; Barrigón ML; Moreno-Muñoz P; Carmona Camacho R; Baca-García E; Artés-Rodríguez A
    JMIR Mhealth Uhealth; 2018 Dec; 6(12):e197. PubMed ID: 30530465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The suitability of smartphone camera sensors for detecting radiation.
    Johary YH; Trapp J; Aamry A; Aamri H; Tamam N; Sulieman A
    Sci Rep; 2021 Jun; 11(1):12653. PubMed ID: 34135425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Sequential Stitching of High-Resolution Panorama for Android Devices Using Precapture Feature Detection and the Orientation Sensor.
    Yaseen ; Kwon OJ; Lee J; Ullah F; Jamil S; Kim JS
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-rate smartphone videoscopy for microsecond luminescence lifetime imaging with machine learning.
    Wang Y; Sadeghi S; Velayati A; Paul R; Hetzler Z; Danilov E; Ligler FS; Wei Q
    PNAS Nexus; 2023 Oct; 2(10):pgad313. PubMed ID: 37829844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive Hemoglobin Level Prediction in a Mobile Phone Environment: State of the Art Review and Recommendations.
    Hasan MK; Aziz MH; Zarif MII; Hasan M; Hashem M; Guha S; Love RR; Ahamed S
    JMIR Mhealth Uhealth; 2021 Apr; 9(4):e16806. PubMed ID: 33830065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.