BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 37903749)

  • 41. Assessing batch effects of genotype calling algorithm BRLMM for the Affymetrix GeneChip Human Mapping 500 K array set using 270 HapMap samples.
    Hong H; Su Z; Ge W; Shi L; Perkins R; Fang H; Xu J; Chen JJ; Han T; Kaput J; Fuscoe JC; Tong W
    BMC Bioinformatics; 2008 Aug; 9 Suppl 9(Suppl 9):S17. PubMed ID: 18793462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implementing a QTL detection study (GWAS) using genomic prediction methodology.
    Garrick DJ; Fernando RL
    Methods Mol Biol; 2013; 1019():275-98. PubMed ID: 23756895
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Using markers with large effect in genetic and genomic predictions.
    Lopes MS; Bovenhuis H; van Son M; Nordbø Ø; Grindflek EH; Knol EF; Bastiaansen JW
    J Anim Sci; 2017 Jan; 95(1):59-71. PubMed ID: 28177367
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results.
    Gebreyesus G; Bovenhuis H; Lund MS; Poulsen NA; Sun D; Buitenhuis B
    Genet Sel Evol; 2019 Apr; 51(1):16. PubMed ID: 31029078
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SWEEP: A Tool for Filtering High-Quality SNPs in Polyploid Crops.
    Clevenger JP; Ozias-Akins P
    G3 (Bethesda); 2015 Jul; 5(9):1797-803. PubMed ID: 26153076
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PhredEM: a phred-score-informed genotype-calling approach for next-generation sequencing studies.
    Liao P; Satten GA; Hu YJ
    Genet Epidemiol; 2017 Jul; 41(5):375-387. PubMed ID: 28560825
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat.
    Tsai HY; Janss LL; Andersen JR; Orabi J; Jensen JD; Jahoor A; Jensen J
    Sci Rep; 2020 Feb; 10(1):3347. PubMed ID: 32099054
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies.
    Hao K; Chudin E; McElwee J; Schadt EE
    BMC Genet; 2009 Jun; 10():27. PubMed ID: 19531258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SNVHMM: predicting single nucleotide variants from next generation sequencing.
    Bian J; Liu C; Wang H; Xing J; Kachroo P; Zhou X
    BMC Bioinformatics; 2013 Jul; 14():225. PubMed ID: 23855743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. iPat: intelligent prediction and association tool for genomic research.
    Chen CJ; Zhang Z
    Bioinformatics; 2018 Jun; 34(11):1925-1927. PubMed ID: 29342241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Multi-breed genomic prediction using Bayes R with sequence data and dropping variants with a small effect.
    van den Berg I; Bowman PJ; MacLeod IM; Hayes BJ; Wang T; Bolormaa S; Goddard ME
    Genet Sel Evol; 2017 Sep; 49(1):70. PubMed ID: 28934948
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving GWAS discovery and genomic prediction accuracy in biobank data.
    Orliac EJ; Trejo Banos D; Ojavee SE; Läll K; Mägi R; Visscher PM; Robinson MR
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2121279119. PubMed ID: 35905320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of genotype imputation on the performance of GBLUP and Bayesian methods for genomic prediction.
    Chen L; Li C; Sargolzaei M; Schenkel F
    PLoS One; 2014; 9(7):e101544. PubMed ID: 25025158
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide association mapping and genomic prediction of agronomical traits and breeding values in Iranian wheat under rain-fed and well-watered conditions.
    Rabieyan E; Bihamta MR; Moghaddam ME; Mohammadi V; Alipour H
    BMC Genomics; 2022 Dec; 23(1):831. PubMed ID: 36522726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. GAPIT Version 2: An Enhanced Integrated Tool for Genomic Association and Prediction.
    Tang Y; Liu X; Wang J; Li M; Wang Q; Tian F; Su Z; Pan Y; Liu D; Lipka AE; Buckler ES; Zhang Z
    Plant Genome; 2016 Jul; 9(2):. PubMed ID: 27898829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of Bayesian genomic prediction methods to genome-wide association analyses.
    Wolc A; Dekkers JCM
    Genet Sel Evol; 2022 May; 54(1):31. PubMed ID: 35562659
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using encrypted genotypes and phenotypes for collaborative genomic analyses to maintain data confidentiality.
    Zhao T; Wang F; Mott R; Dekkers J; Cheng H
    Genetics; 2024 Mar; 226(3):. PubMed ID: 38085098
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-wide prediction using Bayesian additive regression trees.
    Waldmann P
    Genet Sel Evol; 2016 Jun; 48(1):42. PubMed ID: 27286957
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A fully automated pipeline for quantitative genotype calling from next generation sequencing data in autopolyploids.
    Pereira GS; Garcia AAF; Margarido GRA
    BMC Bioinformatics; 2018 Nov; 19(1):398. PubMed ID: 30382832
    [TBL] [Abstract][Full Text] [Related]  

  • 60. SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies.
    Martin ER; Kinnamon DD; Schmidt MA; Powell EH; Zuchner S; Morris RW
    Bioinformatics; 2010 Nov; 26(22):2803-10. PubMed ID: 20861027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.