BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37903786)

  • 21. Combined effect of silica fume and fly ash as cementitious material on strength characteristics, embodied carbon, and cost of autoclave aerated concrete.
    Lashari AR; Kumar A; Kumar R; Rizvi SH
    Environ Sci Pollut Res Int; 2023 Feb; 30(10):27875-27883. PubMed ID: 36394814
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on the strength and durability characteristics of fiber-reinforced recycled aggregate concrete modified with supplementary cementitious material.
    Zaid O; Althoey F; García RM; de Prado-Gil J; Alsulamy S; Abuhussain MA
    Heliyon; 2023 Sep; 9(9):e19978. PubMed ID: 37809756
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance Comparison between Densified and Undensified Silica Fume in Ultra-High Performance Fiber-Reinforced Concrete.
    Kang SH; Hong SG; Moon J
    Materials (Basel); 2020 Sep; 13(17):. PubMed ID: 32899321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Sugarcane Bagasse Ash and Silica Fume on the Mechanical and Durability Properties of Concrete.
    Farrant WE; Babafemi AJ; Kolawole JT; Panda B
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compressive Behavior Characteristics of High-Performance Slurry-Infiltrated Fiber-Reinforced Cementitious Composites (SIFRCCs) under Uniaxial Compressive Stress.
    Kim S; Han S; Park C; Yun KK
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906258
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical Properties, Crack Width, and Propagation of Waste Ceramic Concrete Subjected to Elevated Temperatures: A Comprehensive Study.
    Najm HM; Nanayakkara O; Ahmad M; Sabri Sabri MM
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407705
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal and Mechanical Properties of Concrete Incorporating Silica Fume and Waste Rubber Powder.
    Lakhiar MT; Kong SY; Bai Y; Susilawati S; Zahidi I; Paul SC; Raghunandan ME
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432983
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concrete by Preplaced Aggregate Method Using Silica Fume and Polypropylene Fibres.
    Khanzada FA; Nazir K; Ishtiaq M; Javed MF; Kashif-Ur-Rehman S; Aslam F; Musarat MA; Usanova KI
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329449
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Varying Steel Fiber Content on Strength and Permeability Characteristics of High Strength Concrete with Micro Silica.
    Ali B; Kurda R; Herki B; Alyousef R; Mustafa R; Mohammed A; Raza A; Ahmed H; Fayyaz Ul-Haq M
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339297
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental Study on the Compressive Strength and Fatigue Life of Cement Concrete under Temperature Differential Cycling.
    Tao C; Dong L; Fan W; Yu T
    Materials (Basel); 2023 Dec; 16(23):. PubMed ID: 38068231
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Data-Driven Techniques for Evaluating the Mechanical Strength and Raw Material Effects of Steel Fiber-Reinforced Concrete.
    Al-Hashem MN; Amin MN; Ahmad W; Khan K; Ahmad A; Ehsan S; Al-Ahmad QMS; Qadir MG
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental study to compare the strength of concrete with different amounts of polypropylene fibers at high temperatures.
    Wang Y; Nejati F; Edalatpanah SA; Goudarzi Karim R
    Sci Rep; 2024 Apr; 14(1):8566. PubMed ID: 38609474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical Properties of Ultra-High Performance Concrete before and after Exposure to High Temperatures.
    Chen HJ; Yu YL; Tang CW
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Fibers Reinforced Engineered Cementitious Composites Properties Using Quartz Powder.
    Liew MS; Aswin M; Danyaro KU; Mohammed BS; Al-Yacouby AM
    Materials (Basel); 2020 May; 13(11):. PubMed ID: 32466366
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Performance of Different Concrete Types Exposed to Elevated Temperatures: A Review.
    Alhamad A; Yehia S; Lublóy É; Elchalakani M
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888499
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of Compressive Strength for Self-Consolidating High-Strength Concrete Incorporating Palm Oil Fuel Ash.
    Safiuddin M; Raman SN; Abdus Salam M; Jumaat MZ
    Materials (Basel); 2016 May; 9(5):. PubMed ID: 28773520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the Compressive Strength of Waste-Based Concretes Using Artificial Neural Network.
    Amar M; Benzerzour M; Zentar R; Abriak NE
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical and Microstructural Characterization of Quarry Rock Dust Incorporated Steel Fiber Reinforced Geopolymer Concrete and Residual Properties after Exposure to Elevated Temperatures.
    Ibraheem M; Butt F; Waqas RM; Hussain K; Tufail RF; Ahmad N; Usanova K; Musarat MA
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Study on Mechanical Properties and Durability of Polymer Silica Fume Concrete with Vinyl Ester Resin.
    Farahani HZ; Farahani A; Fakharian P; Jahed Armaghani D
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676494
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance comparison of neural network training algorithms in the modeling properties of steel fiber reinforced concrete.
    Awolusi TF; Oke OL; Akinkurolere OO; Sojobi AO; Aluko OG
    Heliyon; 2019 Jan; 5(1):e01115. PubMed ID: 30623130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.