These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37903926)

  • 41. Defect Compensation and Lattice Stabilization Enables High Voltage Output in Tin Halide Perovskite Solar Cells.
    Wang S; Wu C; Yao H; Xie L; Xiao Y; Ding L; Hao F
    Small; 2024 Mar; 20(13):e2308877. PubMed ID: 37948431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Regioselective Multisite Atomic-Chlorine Passivation Enables Efficient and Stable Perovskite Solar Cells.
    Wu J; Li MH; Fan JT; Li Z; Fan XH; Xue DJ; Hu JS
    J Am Chem Soc; 2023 Mar; 145(10):5872-5879. PubMed ID: 36872583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. F-Type Pseudo-Halide Anions for High-Efficiency and Stable Wide-Band-Gap Inverted Perovskite Solar Cells with Fill Factor Exceeding 84.
    Tao J; Liu X; Shen J; Han S; Guan L; Fu G; Kuang DB; Yang S
    ACS Nano; 2022 Jul; 16(7):10798-10810. PubMed ID: 35796580
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Passivation of Grain Boundary by Squaraine Zwitterions for Defect Passivation and Efficient Perovskite Solar Cells.
    Wang Z; Pradhan A; Kamarudin MA; Pandey M; Pandey SS; Zhang P; Ng CH; Tripathi ASM; Ma T; Hayase S
    ACS Appl Mater Interfaces; 2019 Mar; 11(10):10012-10020. PubMed ID: 30775904
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells.
    Liu W; Liu N; Ji S; Hua H; Ma Y; Hu R; Zhang J; Chu L; Li X; Huang W
    Nanomicro Lett; 2020 Jun; 12(1):119. PubMed ID: 34138140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Supramolecular halogen bond passivation of organic-inorganic halide perovskite solar cells.
    Abate A; Saliba M; Hollman DJ; Stranks SD; Wojciechowski K; Avolio R; Grancini G; Petrozza A; Snaith HJ
    Nano Lett; 2014 Jun; 14(6):3247-54. PubMed ID: 24787646
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synergistic Interface Layer Optimization and Surface Passivation with Fluorocarbon Molecules toward Efficient and Stable Inverted Planar Perovskite Solar Cells.
    Zhou L; Su J; Lin Z; Guo X; Ma J; Li T; Zhang J; Chang J; Hao Y
    Research (Wash D C); 2021; 2021():9836752. PubMed ID: 34286280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tin Halide Perovskite Solar Cells with Open-Circuit Voltages Approaching the Shockley-Queisser Limit.
    Liu W; Hu S; Pascual J; Nakano K; Murdey R; Tajima K; Wakamiya A
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32487-32495. PubMed ID: 37379236
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zwitterionic ionic liquid synergistically induces interfacial dipole formation and traps state passivation for high-performance perovskite solar cells.
    Shang X; Ma X; Meng F; Ma J; Yang L; Li M; Gao D; Chen C
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):155-163. PubMed ID: 36327719
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic Surface Modification for High-Efficiency Perovskite Nanocrystal Light-Emitting Diodes: Divalent Metal Ion Doping and Halide-Based Ligand Passivation.
    Jeong WH; Lee S; Song H; Shen X; Choi H; Choi Y; Yang J; Yoon JW; Yu Z; Kim J; Seok GE; Lee J; Kim HY; Snaith HJ; Choi H; Park SH; Lee BR
    Adv Sci (Weinh); 2024 Jan; 11(4):e2305383. PubMed ID: 38037253
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Substituted Hole Transport Material for Efficient Perovskite Solar Cells.
    Tao L; Wang B; Wang H; Chen C; Ding X; Tian Y; Lu H; Yang X; Cheng M
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13470-13477. PubMed ID: 33705094
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V.
    Zeng Q; Zhang X; Feng X; Lu S; Chen Z; Yong X; Redfern SAT; Wei H; Wang H; Shen H; Zhang W; Zheng W; Zhang H; Tse JS; Yang B
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29333763
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Grain Boundary Defect Passivation of Triple Cation Mixed Halide Perovskite with Hydrazine-Based Aromatic Iodide for Efficiency Improvement.
    Rahman SI; Lamsal BS; Gurung A; Chowdhury AH; Reza KM; Ghimire N; Bahrami B; Luo W; Bobba RS; Pokharel J; Baniya A; Laskar AR; Emshadi K; Rahman MT; Qiao Q
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):41312-41322. PubMed ID: 32829634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3 D NiO Nanowall Hole-Transporting Layer for the Passivation of Interfacial Contact in Inverted Perovskite Solar Cells.
    Yin X; Zhai J; Du P; Li N; Song L; Xiong J; Ko F
    ChemSusChem; 2020 Mar; 13(5):1006-1012. PubMed ID: 31898849
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells.
    Zhang X; Eurelings S; Bracesco A; Song W; Lenaers S; Van Gompel W; Krishna A; Aernouts T; Lutsen L; Vanderzande D; Creatore M; Zhan Y; Kuang Y; Poortmans J
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):46803-46811. PubMed ID: 37755314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. How Do Surface Polar Molecules Contribute to High Open-Circuit Voltage in Perovskite Solar Cells?
    Ma Y; Zeng C; Zeng P; Hu Y; Li F; Zheng Z; Qin M; Lu X; Liu M
    Adv Sci (Weinh); 2023 Jun; 10(17):e2205072. PubMed ID: 37078797
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Constructing Soft Perovskite-Substrate Interfaces for Dynamic Modulation of Perovskite Film in Inverted Solar Cells with Over 6200 Hours Photostability.
    Lv W; Hu Z; Qiu W; Yan D; Li M; Mei A; Xu L; Chen R
    Adv Sci (Weinh); 2022 Oct; 9(28):e2202028. PubMed ID: 35975451
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing the Performance of Inverted Perovskite Solar Cells via Grain Boundary Passivation with Carbon Quantum Dots.
    Ma Y; Zhang H; Zhang Y; Hu R; Jiang M; Zhang R; Lv H; Tian J; Chu L; Zhang J; Xue Q; Yip HL; Xia R; Li X; Huang W
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3044-3052. PubMed ID: 30585492
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CdS Induced Passivation toward High Efficiency and Stable Planar Perovskite Solar Cells.
    Zhao W; Shi J; Tian C; Wu J; Li H; Li Y; Yu B; Luo Y; Wu H; Xie Z; Wang C; Duan D; Li D; Meng Q
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9771-9780. PubMed ID: 33615775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface passivation of organometal halide perovskites by atomic layer deposition: an investigation of the mechanism of efficient inverted planar solar cells.
    Zhao R; Zhang K; Zhu J; Xiao S; Xiong W; Wang J; Liu T; Xing G; Wang K; Yang S; Wang X
    Nanoscale Adv; 2021 Apr; 3(8):2305-2315. PubMed ID: 36133753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.