These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 37904104)

  • 1. Correction: Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny.
    Kobayashi Y; Kayamori A; Aoki K; Shiwa Y; Matsutani M; Fujita N; Sugita T; Iwasaki W; Tanaka N; Takashima M
    BMC Genomics; 2023 Oct; 24(1):653. PubMed ID: 37904104
    [No Abstract]   [Full Text] [Related]  

  • 2. Chromosome-level genome assemblies of Cutaneotrichosporon spp. (Trichosporonales, Basidiomycota) reveal imbalanced evolution between nucleotide sequences and chromosome synteny.
    Kobayashi Y; Kayamori A; Aoki K; Shiwa Y; Matsutani M; Fujita N; Sugita T; Iwasaki W; Tanaka N; Takashima M
    BMC Genomics; 2023 Oct; 24(1):609. PubMed ID: 37821828
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular identification of yeasts from the order Trichosporonales causing superficial infections.
    Martínez-Herrera E; Duarte-Escalante E; Reyes-Montes MDR; Arenas R; Acosta-Altamirano G; Moreno-Coutiño G; Vite-Garín TM; Meza-Robles A; Frías-De-León MG
    Rev Iberoam Micol; 2021; 38(3):119-124. PubMed ID: 33839018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes.
    Takashima M; Sriswasdi S; Manabe RI; Ohkuma M; Sugita T; Iwasaki W
    Yeast; 2018 Jan; 35(1):99-111. PubMed ID: 29027707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutaneotrichosporon suis sp. nov., a lipolytic yeast species from food and food-related environment.
    Péter G; Mounier J; Garnier L; Soós D; Dlauchy D
    Int J Syst Evol Microbiol; 2019 Aug; 69(8):2367-2371. PubMed ID: 31145674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies.
    Waterhouse RM; Aganezov S; Anselmetti Y; Lee J; Ruzzante L; Reijnders MJMF; Feron R; Bérard S; George P; Hahn MW; Howell PI; Kamali M; Koren S; Lawson D; Maslen G; Peery A; Phillippy AM; Sharakhova MV; Tannier E; Unger MF; Zhang SV; Alekseyev MA; Besansky NJ; Chauve C; Emrich SJ; Sharakhov IV
    BMC Biol; 2020 Jan; 18(1):1. PubMed ID: 31898513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hi-C scaffolded short- and long-read genome assemblies of the California sea lion are broadly consistent for syntenic inference across 45 million years of evolution.
    Peart CR; Williams C; Pophaly SD; Neely BA; Gulland FMD; Adams DJ; Ng BL; Cheng W; Goebel ME; Fedrigo O; Haase B; Mountcastle J; Fungtammasan A; Formenti G; Collins J; Wood J; Sims Y; Torrance J; Tracey A; Howe K; Rhie A; Hoffman JI; Johnson J; Jarvis ED; Breen M; Wolf JBW
    Mol Ecol Resour; 2021 Oct; 21(7):2455-2470. PubMed ID: 34097816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition and delineation of yeast genera based on genomic data: Lessons from Trichosporonales.
    Takashima M; Manabe RI; Nishimura Y; Endoh R; Ohkuma M; Sriswasdi S; Sugita T; Iwasaki W
    Fungal Genet Biol; 2019 Sep; 130():31-42. PubMed ID: 31026590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome-level genome assembly for giant panda provides novel insights into Carnivora chromosome evolution.
    Fan H; Wu Q; Wei F; Yang F; Ng BL; Hu Y
    Genome Biol; 2019 Dec; 20(1):267. PubMed ID: 31810476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae.
    Luo MC; Deal KR; Akhunov ED; Akhunova AR; Anderson OD; Anderson JA; Blake N; Clegg MT; Coleman-Derr D; Conley EJ; Crossman CC; Dubcovsky J; Gill BS; Gu YQ; Hadam J; Heo HY; Huo N; Lazo G; Ma Y; Matthews DE; McGuire PE; Morrell PL; Qualset CO; Renfro J; Tabanao D; Talbert LE; Tian C; Toleno DM; Warburton ML; You FM; Zhang W; Dvorak J
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15780-5. PubMed ID: 19717446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution mapping of the barley leaf rust resistance gene Rph5 using barley expressed sequence tags (ESTs) and synteny with rice.
    Mammadov JA; Steffenson BJ; Maroof MA
    Theor Appl Genet; 2005 Nov; 111(8):1651-60. PubMed ID: 16195886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative Meta-Assembly Pipeline (IMAP): Chromosome-level genome assembler combining multiple de novo assemblies.
    Song G; Lee J; Kim J; Kang S; Lee H; Kwon D; Lee D; Lang GI; Cherry JM; Kim J
    PLoS One; 2019; 14(8):e0221858. PubMed ID: 31454399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome-Level Genome Assembly of a Human Fungal Pathogen Reveals Synteny among Geographically Distinct Species.
    Voorhies M; Cohen S; Shea TP; Petrus S; Muñoz JF; Poplawski S; Goldman WE; Michael TP; Cuomo CA; Sil A; Beyhan S
    mBio; 2022 Feb; 13(1):e0257421. PubMed ID: 35089059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics.
    Jiao WB; Schneeberger K
    Nat Commun; 2020 Feb; 11(1):989. PubMed ID: 32080174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chromosome-level genome assembly for the eastern fence lizard (Sceloporus undulatus), a reptile model for physiological and evolutionary ecology.
    Westfall AK; Telemeco RS; Grizante MB; Waits DS; Clark AD; Simpson DY; Klabacka RL; Sullivan AP; Perry GH; Sears MW; Cox CL; Cox RM; Gifford ME; John-Alder HB; Langkilde T; Angilletta MJ; Leaché AD; Tollis M; Kusumi K; Schwartz TS
    Gigascience; 2021 Oct; 10(10):. PubMed ID: 34599334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Folding Features and Dynamics of 3D Genome Architecture in Plant Fungal Pathogens.
    Xia C; Huang L; Huang J; Zhang H; Huang Y; Benhamed M; Wang M; Chen X; Zhang M; Liu T; Chen W
    Microbiol Spectr; 2022 Dec; 10(6):e0260822. PubMed ID: 36250889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromosome-Level Genome Assemblies of Two Hypnales (Mosses) Reveal High Intergeneric Synteny.
    Yu J; Cai Y; Zhu Y; Zeng Y; Dong S; Zhang K; Wang S; Li L; Goffinet B; Liu H; Liu Y
    Genome Biol Evol; 2022 Feb; 14(2):. PubMed ID: 35166770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection of Orthologous Genes for Construction of a Highly Resolved Phylogenetic Tree and Clarification of the Phylogeny of Trichosporonales Species.
    Takashima M; Manabe R; Iwasaki W; Ohyama A; Ohkuma M; Sugita T
    PLoS One; 2015; 10(8):e0131217. PubMed ID: 26241762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of segmental duplications in regions of breaks of synteny between the human and mouse genomes suggest their involvement in evolutionary rearrangements.
    Armengol L; Pujana MA; Cheung J; Scherer SW; Estivill X
    Hum Mol Genet; 2003 Sep; 12(17):2201-8. PubMed ID: 12915466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome.
    Artemov GN; Bondarenko SM; Naumenko AN; Stegniy VN; Sharakhova MV; Sharakhov IV
    BMC Genomics; 2018 Apr; 19(1):278. PubMed ID: 29688842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.