These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 37904328)

  • 21. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and
    Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R
    Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printed polylactic acid/gelatin-nano-hydroxyapatite/platelet-rich plasma scaffold for critical-sized skull defect regeneration.
    Bahraminasab M; Doostmohammadi N; Talebi A; Arab S; Alizadeh A; Ghanbari A; Salati A
    Biomed Eng Online; 2022 Dec; 21(1):86. PubMed ID: 36503442
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Magnesium-oxide-enhanced bone regeneration: 3D-printing of gelatin-coated composite scaffolds with sustained Rosuvastatin release.
    Gharibshahian M; Salehi M; Kamalabadi-Farahani M; Alizadeh M
    Int J Biol Macromol; 2024 May; 266(Pt 1):130995. PubMed ID: 38521323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation.
    Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A
    J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of osteogenesis and angiogenesis in perfusion bioreactors using improved multi-layer PCL-nHA-nZnO electrospun scaffolds.
    Deymeh SM; Hashemi-Najafabadi S; Baghaban-Eslaminejad M; Bagheri F
    Biotechnol Lett; 2023 Sep; 45(9):1223-1243. PubMed ID: 37439932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing.
    Yao Q; Wei B; Liu N; Li C; Guo Y; Shamie AN; Chen J; Tang C; Jin C; Xu Y; Bian X; Zhang X; Wang L
    Tissue Eng Part A; 2015 Apr; 21(7-8):1388-97. PubMed ID: 25530453
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes.
    Yazdanpanah Z; Sharma NK; Raquin A; Cooper DML; Chen X; Johnston JD
    Biomed Eng Online; 2023 Jul; 22(1):73. PubMed ID: 37474951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior.
    Rezania N; Asadi-Eydivand M; Abolfathi N; Bonakdar S; Mehrjoo M; Solati-Hashjin M
    J Mater Sci Mater Med; 2022 Mar; 33(3):31. PubMed ID: 35267105
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I.
    Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC
    J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed polycaprolactone/β-tricalcium phosphate/carbon nanotube composite - Physical properties and biocompatibility.
    Wang Y; Liu C; Song T; Cao Z; Wang T
    Heliyon; 2024 Mar; 10(5):e26071. PubMed ID: 38468962
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B; Osathanon T; Nowwarote N; Supaphol P; Pavasant P
    J Biomed Mater Res A; 2016 Jan; 104(1):264-71. PubMed ID: 26362586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The osteogenesis of bone marrow stem cells on mPEG-PCL-mPEG/hydroxyapatite composite scaffold via solid freeform fabrication.
    Liao HT; Chen YY; Lai YT; Hsieh MF; Jiang CP
    Biomed Res Int; 2014; 2014():321549. PubMed ID: 24868523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
    Chen Z; Song Y; Zhang J; Liu W; Cui J; Li H; Chen F
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():341-351. PubMed ID: 28024596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration.
    Chiu YC; Fang HY; Hsu TT; Lin CY; Shie MY
    J Endod; 2017 Jun; 43(6):923-929. PubMed ID: 28389072
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells.
    Wang F; Zhang YC; Zhou H; Guo YC; Su XX
    J Biomed Mater Res A; 2014 Mar; 102(3):760-8. PubMed ID: 23564567
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Research of arginylglycylaspartic to promote osteogenesis of bone marrow mesenchymal cells on chitosan/hydroxyapatite scaffolds.
    Qu ZW; Meng QG; Xiao X; Li BL; Zhang FM
    Biomed Mater Eng; 2014; 24(1):683-93. PubMed ID: 24211953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.