BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37904644)

  • 1. Fabrication and In Vivo Assessment of Oxidatively Responsive PolyHIPE Scaffolds for Use in Diabetic Orthopedic Applications.
    Touchet TJ; Horelica M; Gruenbaum R; Lewy K; Hines E; Stranahan L; Saunders WB; Maitland DJ
    Macromol Biosci; 2024 Mar; 24(3):e2300393. PubMed ID: 37904644
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Aldemir Dikici B; Chen MC; Dikici S; Chiu HC; Claeyssens F
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):27696-27705. PubMed ID: 37253168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thiolene- and Polycaprolactone Methacrylate-Based Polymerized High Internal Phase Emulsion (PolyHIPE) Scaffolds for Tissue Engineering.
    Aldemir Dikici B; Malayeri A; Sherborne C; Dikici S; Paterson T; Dew L; Hatton P; Ortega Asencio I; MacNeil S; Langford C; Cameron NR; Claeyssens F
    Biomacromolecules; 2022 Mar; 23(3):720-730. PubMed ID: 34730348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds.
    Aldemir Dikici B; Claeyssens F
    Front Bioeng Biotechnol; 2020; 8():875. PubMed ID: 32903473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering.
    Owen R; Sherborne C; Paterson T; Green NH; Reilly GC; Claeyssens F
    J Mech Behav Biomed Mater; 2016 Feb; 54():159-72. PubMed ID: 26458114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model.
    Pfau MR; Beltran FO; Woodard LN; Dobson LK; Gasson SB; Robbins AB; Lawson ZT; Brian Saunders W; Moreno MR; Grunlan MA
    Acta Biomater; 2021 Dec; 136():233-242. PubMed ID: 34571270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimally porous and biomechanically compatible scaffolds for large-area bone regeneration.
    Amini AR; Adams DJ; Laurencin CT; Nukavarapu SP
    Tissue Eng Part A; 2012 Jul; 18(13-14):1376-88. PubMed ID: 22401817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined Porogen Leaching and Emulsion Templating to produce Bone Tissue Engineering Scaffolds.
    Owen R; Sherborne C; Evans R; Reilly GC; Claeyssens F
    Int J Bioprint; 2020; 6(2):265. PubMed ID: 32782992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-Level Porous Polymer Monoliths with Interconnected Cellular Topology Prepared by Combining Hard Sphere and Emulsion Templating for Use in Bone Tissue Engineering.
    Paljevac M; Gradišnik L; Lipovšek S; Maver U; Kotek J; Krajnc P
    Macromol Biosci; 2018 Feb; 18(2):. PubMed ID: 29205840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous PolyHIPE microspheres for protein delivery from an injectable bone graft.
    Whitely M; Rodriguez-Rivera G; Waldron C; Mohiuddin S; Cereceres S; Sears N; Ray N; Cosgriff-Hernandez E
    Acta Biomater; 2019 Jul; 93():169-179. PubMed ID: 30685476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by
    Aldemir Dikici B; Reilly GC; Claeyssens F
    ACS Appl Mater Interfaces; 2020 Mar; 12(11):12510-12524. PubMed ID: 32100541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile fabrication of poly(L-lactic acid)-grafted hydroxyapatite/poly(lactic-co-glycolic acid) scaffolds by Pickering high internal phase emulsion templates.
    Hu Y; Gu X; Yang Y; Huang J; Hu M; Chen W; Tong Z; Wang C
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17166-75. PubMed ID: 25243730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial and angiogenic potential of iron oxide nanoparticles-stabilized acrylate-based scaffolds for bone tissue engineering applications.
    Aadinath W; Muthuvijayan V
    Colloids Surf B Biointerfaces; 2023 Nov; 231():113572. PubMed ID: 37797467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastomeric Porous Poly(glycerol sebacate) Methacrylate (PGSm) Microspheres as 3D Scaffolds for Chondrocyte Culture and Cartilage Tissue Engineering.
    Singh D; Lindsay S; Gurbaxani S; Crawford A; Claeyssens F
    Int J Mol Sci; 2023 Jun; 24(13):. PubMed ID: 37445620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Characterization of Oxidatively Responsive Thiol-Ene Networks for Bone Graft Applications.
    Touchet T; Briggs S; Graul L; Maitland DJ
    ACS Appl Bio Mater; 2022 Jun; 5(6):2633-2642. PubMed ID: 35658422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of Oxygen Inhibition of PolyHIPE Radical Polymerization using a Thiol-based Crosslinker.
    Whitely ME; Robinson JL; Stuebben MC; Pearce HA; McEnery MAP; Cosgriff-Hernandez E
    ACS Biomater Sci Eng; 2017 Mar; 3(3):409-419. PubMed ID: 29104917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications.
    Bicho D; Canadas RF; Gonçalves C; Pina S; Reis RL; Oliveira JM
    J Biomater Sci Polym Ed; 2021 Oct; 32(15):1966-1982. PubMed ID: 34228590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.