These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37904821)

  • 1. Topologically optimized magnetic lens for magnetic resonance applications.
    Wadhwa S; Jouda M; Deng Y; Nassar O; Mager D; Korvink JG
    Magn Reson (Gott); 2020; 1(2):225-236. PubMed ID: 37904821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband stripline Lenz lens achieves 11 × NMR signal enhancement.
    Liang J; Davoodi H; Wadhwa S; Badilita V; Korvink JG
    Sci Rep; 2024 Jan; 14(1):1645. PubMed ID: 38238376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of Lenz lenses and LC resonators for NMR signal enhancement.
    Jouda M; Kamberger R; Leupold J; Spengler N; Hennig J; Gruschke O; Korvink JG
    Concepts Magn Reson Part B Magn Reson Eng; 2017 Jul; 47B(3):e21357. PubMed ID: 29541005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of flip angle and radiofrequency pulse phase to maximize steady-state magnetization in three-dimensional missing pulse steady-state free precession.
    Kobayashi N
    NMR Biomed; 2024 Jun; 37(6):e5112. PubMed ID: 38299770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ophthalmic magnetic resonance imaging at 7 T using a 6-channel transceiver radiofrequency coil array in healthy subjects and patients with intraocular masses.
    Graessl A; Muhle M; Schwerter M; Rieger J; Oezerdem C; Santoro D; Lysiak D; Winter L; Hezel F; Waiczies S; Guthoff RF; Falke K; Hosten N; Hadlich S; Krueger PC; Langner S; Stachs O; Niendorf T
    Invest Radiol; 2014 May; 49(5):260-70. PubMed ID: 24651662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of radiofrequency shield diameter on signal-to-noise ratio at ultra-high field MRI.
    Zhang B; Adriany G; Delabarre L; Radder J; Lagore R; Rutt B; Yang QX; Ugurbil K; Lattanzi R
    Magn Reson Med; 2021 Jun; 85(6):3522-3530. PubMed ID: 33464649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A theoretical comparison of two optimization methods for radiofrequency drive schemes in high frequency MRI resonators.
    Liu F; Beck BL; Fitzsimmons JR; Blackband SJ; Crozier S
    Phys Med Biol; 2005 Nov; 50(22):5281-91. PubMed ID: 16264253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lenz Lenses in a Cryoprobe: Boosting NMR Sensitivity Toward Environmental Monitoring of Mass-Limited Samples.
    Bastawrous M; Ghosh Biswas R; Soong R; Jouda M; MacKinnon N; Mager D; Korvink JG; Simpson AJ
    Anal Chem; 2023 Jan; 95(2):1327-1334. PubMed ID: 36576271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topology optimization based design of unilateral NMR for generating a remote homogeneous field.
    Wang Q; Gao R; Liu S
    J Magn Reson; 2017 Jun; 279():51-59. PubMed ID: 28463746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New unifying metric for NMR/MRI probe evaluation based on optimized solenoid coil geometry.
    Tritrakarn T; Yamamoto K; Takahashi M; Okamura T
    J Magn Reson; 2024 Jan; 358():107602. PubMed ID: 38061293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the brain MRI at ultra-high field systems using a meta-array structure.
    Alipour A; Seifert AC; Delman BN; Hof PR; Fayad ZA; Balchandani P
    Med Phys; 2023 Dec; 50(12):7606-7618. PubMed ID: 37874014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a Close-Fitting Volume RF Coil for Brain Imaging at 6.5 mT Using Linear Programming.
    Shen S; Xu Z; Koonjoo N; Rosen MS
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1106-1114. PubMed ID: 32746026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving local SNR of a single-channel 54.6 mT MRI system using additional LC-resonator.
    Zhang Y; Guo Y; Kong X; Zeng P; Yin H; Wu J; He Y; Xu Z
    J Magn Reson; 2022 Jun; 339():107215. PubMed ID: 35421711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the optical properties of the magnetic circuit corner shape of the magnetic lens.
    Chen H; Dong Q; Wang P; Zhang L
    Ultramicroscopy; 2018 Dec; 195():147-156. PubMed ID: 30273902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of Waveguide and Resonator by Inductive and Capacitive Irises for EPR Spectroscopy.
    Mett RR; Sidabras JW; Hyde JS
    Appl Magn Reson; 2009; 35(2):285-318. PubMed ID: 19498954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A loop-gap resonator for chirality-sensitive nuclear magneto-electric resonance (NMER).
    Garbacz P; Fischer P; Krämer S
    J Chem Phys; 2016 Sep; 145(10):104201. PubMed ID: 27634253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RF coil optimization: evaluation of B1 field homogeneity using field histograms and finite element calculations.
    Li S; Yang QX; Smith MB
    Magn Reson Imaging; 1994; 12(7):1079-87. PubMed ID: 7997095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An optimized solenoidal head radiofrequency coil for low-field magnetic resonance imaging.
    Blasiak B; Volotovskyy V; Deng C; Tomanek B
    Magn Reson Imaging; 2009 Nov; 27(9):1302-8. PubMed ID: 19559554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black body and transverse electromagnetic resonators operating at 340 MHz: volume RF coils for ultra high field MRI.
    Robitaille PM
    J Comput Assist Tomogr; 1999; 23(6):879-90. PubMed ID: 10589562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sheared two-dimensional radiofrequency excitation for off-resonance robustness and fat suppression in reduced field-of-view imaging.
    Barlas BA; Bahadir CD; Kafali SG; Yilmaz U; Saritas EU
    Magn Reson Med; 2022 Dec; 88(6):2504-2519. PubMed ID: 36000548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.