BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37904914)

  • 1. Global control of cellular physiology by biomolecular condensates through modulation of electrochemical equilibria.
    Dai Y; Zhou Z; Kim K; Rivera N; Mohammed J; Hsu-Kim H; Chilkoti A; You L
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusiophoresis promotes phase separation and transport of biomolecular condensates.
    Doan VS; Alshareedah I; Singh A; Banerjee PR; Shin S
    bioRxiv; 2024 Feb; ():. PubMed ID: 37461689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusiophoresis promotes phase separation and transport of biomolecular condensates.
    Doan VS; Alshareedah I; Singh A; Banerjee PR; Shin S
    Res Sq; 2023 Jul; ():. PubMed ID: 37546778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface of biomolecular condensates modulates redox reactions.
    Dai Y; Chamberlayne CF; Messina MS; Chang CJ; Zare RN; You L; Chilkoti A
    Chem; 2023 Jun; 9(6):1594-1609. PubMed ID: 37546704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium ion influx regulates liquidity of biomolecular condensates in hyperosmotic stress response.
    Morishita K; Watanabe K; Naguro I; Ichijo H
    Cell Rep; 2023 Apr; 42(4):112315. PubMed ID: 37019112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecular condensates in neurodegeneration and cancer.
    Spannl S; Tereshchenko M; Mastromarco GJ; Ihn SJ; Lee HO
    Traffic; 2019 Dec; 20(12):890-911. PubMed ID: 31606941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of condensate material properties and chromatin heterogeneity governs nuclear condensate ripening.
    Banerjee DS; Chigumira T; Lackner RM; Kratz JC; Chenoweth DM; Banerjee S; Zhang H
    bioRxiv; 2024 May; ():. PubMed ID: 38766065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximity to criticality predicts surface properties of biomolecular condensates.
    Pyo AGT; Zhang Y; Wingreen NS
    Proc Natl Acad Sci U S A; 2023 Jun; 120(23):e2220014120. PubMed ID: 37252985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets.
    Niu X; Zhang L; Wu Y; Zong Z; Wang B; Liu J; Zhang L; Zhou F
    MedComm (2020); 2023 Apr; 4(2):e223. PubMed ID: 36875159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALS-linked mutations impair UBQLN2 stress-induced biomolecular condensate assembly in cells.
    Riley JF; Fioramonti PJ; Rusnock AK; Hehnly H; Castañeda CA
    J Neurochem; 2021 Oct; 159(1):145-155. PubMed ID: 34129687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct chemical environments in biomolecular condensates.
    Kilgore HR; Mikhael PG; Overholt KJ; Boija A; Hannett NM; Van Dongen C; Lee TI; Chang YT; Barzilay R; Young RA
    Nat Chem Biol; 2024 Mar; 20(3):291-301. PubMed ID: 37770698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomolecular condensates in plant RNA silencing: insights into formation, function, and stress responses.
    Li Q; Liu Y; Zhang X
    Plant Cell; 2024 Jan; 36(2):227-245. PubMed ID: 37772963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing.
    Alberti S; Hyman AA
    Nat Rev Mol Cell Biol; 2021 Mar; 22(3):196-213. PubMed ID: 33510441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress-related biomolecular condensates in plants.
    Solis-Miranda J; Chodasiewicz M; Skirycz A; Fernie AR; Moschou PN; Bozhkov PV; Gutierrez-Beltran E
    Plant Cell; 2023 Sep; 35(9):3187-3204. PubMed ID: 37162152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An evolutionarily nascent architecture underlying the formation and emergence of biomolecular condensates.
    Jaberi-Lashkari N; Lee B; Aryan F; Calo E
    Cell Rep; 2023 Aug; 42(8):112955. PubMed ID: 37586369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning the chemical grammar of biomolecular condensates.
    Kilgore HR; Young RA
    Nat Chem Biol; 2022 Dec; 18(12):1298-1306. PubMed ID: 35761089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Principles and functions of condensate modifying drugs.
    Patel A; Mitrea D; Namasivayam V; Murcko MA; Wagner M; Klein IA
    Front Mol Biosci; 2022; 9():1007744. PubMed ID: 36483537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining basic rules for hardening influenza A virus liquid condensates.
    Etibor TA; Vale-Costa S; Sridharan S; Brás D; Becher I; Mello VH; Ferreira F; Alenquer M; Savitski MM; Amorim MJ
    Elife; 2023 Apr; 12():. PubMed ID: 37013374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced Surface Passivation for High-Sensitivity Studies of Biomolecular Condensates.
    Yao RW; Rosen MK
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dilute phase oligomerization can oppose phase separation and modulate material properties of a ribonucleoprotein condensate.
    Seim I; Posey AE; Snead WT; Stormo BM; Klotsa D; Pappu RV; Gladfelter AS
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2120799119. PubMed ID: 35333653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.