BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 37904933)

  • 1. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics.
    Yan T; Boatner LM; Cui L; Tontonoz P; Backus KM
    bioRxiv; 2023 Oct; ():. PubMed ID: 37904933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics.
    Yan T; Boatner LM; Cui L; Tontonoz PJ; Backus KM
    JACS Au; 2023 Dec; 3(12):3506-3523. PubMed ID: 38155636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.
    Yan T; Julio AR; Villanueva M; Jones AE; Ball AB; Boatner LM; Turmon AC; Nguyễn KB; Yen SL; Desai HS; Divakaruni AS; Backus KM
    Cell Chem Biol; 2023 Jul; 30(7):811-827.e7. PubMed ID: 37419112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SP3-FAIMS-Enabled High-Throughput Quantitative Profiling of the Cysteinome.
    Desai HS; Yan T; Backus KM
    Curr Protoc; 2022 Jul; 2(7):e492. PubMed ID: 35895291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity-labeling chemoproteomics defines the subcellular cysteinome and inflammation-responsive mitochondrial redoxome.
    Yan T; Julio AR; Villanueva M; Jones AE; Ball AB; Boatner LM; Turmon AC; Yen SL; Desai HS; Divakaruni AS; Backus KM
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*.
    Yan T; Desai HS; Boatner LM; Yen SL; Cao J; Palafox MF; Jami-Alahmadi Y; Backus KM
    Chembiochem; 2021 May; 22(10):1841-1851. PubMed ID: 33442901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-omic stratification of the missense variant cysteinome.
    Desai H; Ofori S; Boatner L; Yu F; Villanueva M; Ung N; Nesvizhskii AI; Backus K
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SP3-Enabled Rapid and High Coverage Chemoproteomic Identification of Cell-State-Dependent Redox-Sensitive Cysteines.
    Desai HS; Yan T; Yu F; Sun AW; Villanueva M; Nesvizhskii AI; Backus KM
    Mol Cell Proteomics; 2022 Apr; 21(4):100218. PubMed ID: 35219905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol for organelle-specific cysteine capture and quantification of cysteine oxidation state.
    Julio AR; Yan T; Backus KM
    STAR Protoc; 2024 Mar; 5(1):102865. PubMed ID: 38329879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-specific quantitative cysteine profiling with data-independent acquisition-based mass spectrometry.
    Yang F; Wang C
    Methods Enzymol; 2023; 679():295-322. PubMed ID: 36682866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis.
    Doron S; Lampl N; Savidor A; Katina C; Gabashvili A; Levin Y; Rosenwasser S
    Free Radic Biol Med; 2021 Nov; 176():366-377. PubMed ID: 34619326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Acryloylindole-alkyne (NAIA) enables imaging and profiling new ligandable cysteines and oxidized thiols by chemoproteomics.
    Koo TY; Lai H; Nomura DK; Chung CY
    Nat Commun; 2023 Jun; 14(1):3564. PubMed ID: 37322008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling Cysteine Reactivity and Oxidation in the Endoplasmic Reticulum.
    Bechtel TJ; Li C; Kisty EA; Maurais AJ; Weerapana E
    ACS Chem Biol; 2020 Feb; 15(2):543-553. PubMed ID: 31899610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative thiol reactivity profiling platform to analyze redox and electrophile reactive cysteine proteomes.
    Fu L; Li Z; Liu K; Tian C; He J; He J; He F; Xu P; Yang J
    Nat Protoc; 2020 Sep; 15(9):2891-2919. PubMed ID: 32690958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying Redox-Sensitive Cysteine Residues in Mitochondria.
    Kisty EA; Saart EC; Weerapana E
    Antioxidants (Basel); 2023 Apr; 12(5):. PubMed ID: 37237858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1.
    Aracena-Parks P; Goonasekera SA; Gilman CP; Dirksen RT; Hidalgo C; Hamilton SL
    J Biol Chem; 2006 Dec; 281(52):40354-68. PubMed ID: 17071618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP.
    Bak DW; Weerapana E
    Methods Enzymol; 2022; 662():187-225. PubMed ID: 35101210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CysDB: a human cysteine database based on experimental quantitative chemoproteomics.
    Boatner LM; Palafox MF; Schweppe DK; Backus KM
    Cell Chem Biol; 2023 Jun; 30(6):683-698.e3. PubMed ID: 37119813
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopically Labeled Desthiobiotin Azide (isoDTB) Tags Enable Global Profiling of the Bacterial Cysteinome.
    Zanon PRA; Lewald L; Hacker SM
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2829-2836. PubMed ID: 31782878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.