These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 3790499)
1. Analysis of the self-association of human red cell spectrin. Shahbakhti F; Gratzer WB Biochemistry; 1986 Oct; 25(20):5969-75. PubMed ID: 3790499 [TBL] [Abstract][Full Text] [Related]
2. The self-association of ovine erythrocyte spectrin. Cole N; Ralston GB Int J Biochem; 1993 Nov; 25(11):1555-9. PubMed ID: 8288023 [TBL] [Abstract][Full Text] [Related]
4. Analysis of human red cell spectrin tetramer (head-to-head) assembly using complementary univalent peptides. DeSilva TM; Peng KC; Speicher KD; Speicher DW Biochemistry; 1992 Nov; 31(44):10872-8. PubMed ID: 1420200 [TBL] [Abstract][Full Text] [Related]
5. The role of Se in the interconversion of polymeric states of spectrin from human erythrocytes. Yang FY; Yang J; Liu ZM Biofactors; 1991 Jan; 3(1):49-52. PubMed ID: 2059317 [TBL] [Abstract][Full Text] [Related]
7. Binding of an 80 000 dalton trypsin fragment of spectrin to intact spectrin. Hanspal M; Ralston GB Biochim Biophys Acta; 1982 Dec; 709(1):105-9. PubMed ID: 7150602 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for the high activation energy of spectrin self-association. Morris SA; Eber SW; Gratzer WB FEBS Lett; 1989 Feb; 244(1):68-70. PubMed ID: 2924912 [TBL] [Abstract][Full Text] [Related]
9. Shear-response of the spectrin dimer-tetramer equilibrium in the red blood cell membrane. An X; Lecomte MC; Chasis JA; Mohandas N; Gratzer W J Biol Chem; 2002 Aug; 277(35):31796-800. PubMed ID: 12105217 [TBL] [Abstract][Full Text] [Related]
10. Assessment of the validity of the Adams and Fujita approximation for the higher oligomers of human spectrin. Henniker A; Ralston GB Biophys Chem; 1996 Jun; 60(3):143-8. PubMed ID: 8679925 [TBL] [Abstract][Full Text] [Related]
11. The spectrin network as a barrier to lateral diffusion in erythrocytes. A percolation analysis. Saxton MJ Biophys J; 1989 Jan; 55(1):21-8. PubMed ID: 2930822 [TBL] [Abstract][Full Text] [Related]
12. Effects of dextran on the self-association of human spectrin. Lindner R; Ralston G Biophys Chem; 1995 Dec; 57(1):15-25. PubMed ID: 8534835 [TBL] [Abstract][Full Text] [Related]
13. Interaction of spectrin with hemin disaggregates spectrin associations. Avissar N; Inbal A; Rabizadeh E; Shaklai M; Shaklai N Biochem Int; 1984 Jan; 8(1):113-20. PubMed ID: 6477592 [TBL] [Abstract][Full Text] [Related]
15. Self-association of human spectrin. A thermodynamic and kinetic study. Ungewickell E; Gratzer W Eur J Biochem; 1978 Aug; 88(2):379-85. PubMed ID: 689023 [No Abstract] [Full Text] [Related]
16. Structural study of spectrin from human erythrocyte membranes. Kam Z; Josephs R; Eisenberg H; Gratzer WB Biochemistry; 1977 Dec; 16(25):5568-72. PubMed ID: 921950 [TBL] [Abstract][Full Text] [Related]
17. Formation and properties of spectrin containing a truncated beta-chain, generated by an endogenous calcium-dependent protease. Backman L; Pekrun A; Gratzer WB J Biol Chem; 1991 Feb; 266(6):3835-40. PubMed ID: 1995636 [TBL] [Abstract][Full Text] [Related]
18. A reappraisal of the self-association of human spectrin. Morris M; Ralston GB Biochim Biophys Acta; 1984 Jul; 788(1):132-7. PubMed ID: 6743660 [TBL] [Abstract][Full Text] [Related]
19. Human erythrocyte spectrin dimer intrinsic viscosity: temperature dependence and implications for the molecular basis of the erythrocyte membrane free energy. Stokke BT; Mikkelsen A; Elgsaeter A Biochim Biophys Acta; 1985 Jun; 816(1):102-10. PubMed ID: 4005229 [TBL] [Abstract][Full Text] [Related]
20. Identification of functional domains of human erythrocyte spectrin. Morrow JS; Speicher DW; Knowles WJ; Hsu CJ; Marchesi VT Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6592-6. PubMed ID: 6935670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]