These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37905046)

  • 1. Continuous Tracking using Deep Learning-based Decoding for Non-invasive Brain-Computer Interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    bioRxiv; 2024 Apr; ():. PubMed ID: 37905046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous tracking using deep learning-based decoding for noninvasive brain-computer interface.
    Forenzo D; Zhu H; Shanahan J; Lim J; He B
    PNAS Nexus; 2024 Apr; 3(4):pgae145. PubMed ID: 38689706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised adaptation of an ECoG based brain-computer interface using neural correlates of task performance.
    Rouanne V; Costecalde T; Benabid AL; Aksenova T
    Sci Rep; 2022 Dec; 12(1):21316. PubMed ID: 36494390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    Front Hum Neurosci; 2023; 17():1111645. PubMed ID: 37007675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benefits of deep learning classification of continuous noninvasive brain-computer interface control.
    Stieger JR; Engel SA; Suma D; He B
    J Neural Eng; 2021 Jun; 18(4):. PubMed ID: 34038873
    [No Abstract]   [Full Text] [Related]  

  • 6. Neural correlates of user learning during long-term BCI training for the Cybathlon competition.
    Tortora S; Beraldo G; Bettella F; Formaggio E; Rubega M; Del Felice A; Masiero S; Carli R; Petrone N; Menegatti E; Tonin L
    J Neuroeng Rehabil; 2022 Jul; 19(1):69. PubMed ID: 35790978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transfer learning promotes acquisition of individual BCI skills.
    Kumar S; Alawieh H; Racz FS; Fakhreddine R; Millán JDR
    PNAS Nexus; 2024 Feb; 3(2):pgae076. PubMed ID: 38426121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning-based coadaptive calibration for brain-computer interfaces.
    Vidaurre C; Sannelli C; Müller KR; Blankertz B
    Neural Comput; 2011 Mar; 23(3):791-816. PubMed ID: 21162666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An adaptive closed-loop ECoG decoder for long-term and stable bimanual control of an exoskeleton by a tetraplegic.
    Moly A; Costecalde T; Martel F; Martin M; Larzabal C; Karakas S; Verney A; Charvet G; Chabardes S; Benabid AL; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35234665
    [No Abstract]   [Full Text] [Related]  

  • 13. Continuous sensorimotor rhythm based brain computer interface learning in a large population.
    Stieger JR; Engel SA; He B
    Sci Data; 2021 Apr; 8(1):98. PubMed ID: 33795705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Training Effect in 42 Human Subjects Using a Non-invasive Sensorimotor Rhythm Based Online BCI.
    Meng J; He B
    Front Hum Neurosci; 2019; 13():128. PubMed ID: 31057380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning neural decoders without labels using multiple data streams.
    Peterson SM; Rao RPN; Brunton BW
    J Neural Eng; 2022 Aug; 19(4):. PubMed ID: 35905727
    [No Abstract]   [Full Text] [Related]  

  • 16. Decoding movement kinematics from EEG using an interpretable convolutional neural network.
    Borra D; Mondini V; Magosso E; Müller-Putz GR
    Comput Biol Med; 2023 Oct; 165():107323. PubMed ID: 37619325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding ECoG signal into 3D hand translation using deep learning.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 18. Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs.
    Schwarz A; Brandstetter J; Pereira J; Müller-Putz GR
    Med Biol Eng Comput; 2019 Nov; 57(11):2347-2357. PubMed ID: 31522355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riemannian geometric and ensemble learning for decoding cross-session motor imagery electroencephalography signals.
    Pan L; Wang K; Xu L; Sun X; Yi W; Xu M; Ming D
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37931299
    [No Abstract]   [Full Text] [Related]  

  • 20. Adaptive LDA Classifier Enhances Real-Time Control of an EEG Brain-Computer Interface for Decoding Imagined Syllables.
    Wu S; Bhadra K; Giraud AL; Marchesotti S
    Brain Sci; 2024 Feb; 14(3):. PubMed ID: 38539585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.