These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 3790511)
41. A method for determining the positional isotope exchange in a nucleoside triphosphate: cyclization of nucleoside triphosphate by dicyclohexylcarbodiimide. Webb MR Biochemistry; 1980 Oct; 19(21):4744-8. PubMed ID: 7426626 [TBL] [Abstract][Full Text] [Related]
42. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force. Sorgato MC; Branca D; Ferguson SJ Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563 [TBL] [Abstract][Full Text] [Related]
43. Effect of dimethylsulfoxide on ATP synthesis by mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):483-7. PubMed ID: 6238952 [TBL] [Abstract][Full Text] [Related]
44. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles. Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217 [TBL] [Abstract][Full Text] [Related]
45. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase. Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308 [TBL] [Abstract][Full Text] [Related]
46. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559 [TBL] [Abstract][Full Text] [Related]
47. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition. Penin F; Di Pietro A; Godinot C; Gautheron DC Biochemistry; 1988 Dec; 27(25):8969-74. PubMed ID: 2906804 [TBL] [Abstract][Full Text] [Related]
48. Estimation of H+-translation stoicheiometry of mitochondrial ATPase by comparison of proton-motive forces with clamped phosphorylation potentials in submitochondrial particles. Sorgato MC; Galiazzo F; Panato L; Ferguson SJ Biochim Biophys Acta; 1982 Oct; 682(1):184-8. PubMed ID: 6215943 [TBL] [Abstract][Full Text] [Related]
49. [The role of lipids in the regulation of ATP and PPi synthesis in mitochondria]. Mansurova SE; Dukhovich VF; Spiridonova VA; Kulaev IS Ukr Biokhim Zh (1978); 1984; 56(3):331-9. PubMed ID: 6147037 [TBL] [Abstract][Full Text] [Related]
50. Mechanism of oxygen exchange in actin-activated hydrolysis of adenosine triphosphate by myosin subfragment 1. Shukla KK; Levy HM Biochemistry; 1977 Jan; 16(1):132-6. PubMed ID: 137740 [TBL] [Abstract][Full Text] [Related]
51. Mitochondrial ATP-Pi exchange complex and the site of uncoupling of oxidative phosphorylation. Hatefi Y; Hanstein WG; Galante Y; Stiggall DL Fed Proc; 1975 Jul; 34(8):1699-706. PubMed ID: 1093889 [TBL] [Abstract][Full Text] [Related]
52. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles. Bashford CL; Thayer WS J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873 [TBL] [Abstract][Full Text] [Related]
53. Identification of the nucleotide-binding site for ATP synthesis and hydrolysis in mitochondrial soluble F1-ATPase. Sakamoto J J Biochem; 1984 Aug; 96(2):475-81. PubMed ID: 6238951 [TBL] [Abstract][Full Text] [Related]
54. Decline of Phosphotransfer and Substrate Supply Metabolic Circuits Hinders ATP Cycling in Aging Myocardium. Nemutlu E; Gupta A; Zhang S; Viqar M; Holmuhamedov E; Terzic A; Jahangir A; Dzeja P PLoS One; 2015; 10(9):e0136556. PubMed ID: 26378442 [TBL] [Abstract][Full Text] [Related]
55. Mechanisms by which reactions catalyzed by chloroplast coupling factor 1 are inhibited: ATP synthesis and ATP-H2O oxygen exchange. Spencer JG; Wimmer MJ Biochemistry; 1985 Jul; 24(15):3884-90. PubMed ID: 2864951 [TBL] [Abstract][Full Text] [Related]
56. Mechanism for oxygen exchange in the chloroplast photophosphorylation system. Wimmer MJ; Rose IA J Biol Chem; 1977 Oct; 252(19):6769-75. PubMed ID: 893441 [TBL] [Abstract][Full Text] [Related]
57. Mechanism of activation of bicarbonate ion by mitochondrial carbamoyl-phosphate synthetase: formation of enzyme-bound adenosine diphosphate from the adenosine triphosphate that yields inorganic phosphate. Rubio V; Britton HG; Grisolia S; Sproat BS; Lowe G Biochemistry; 1981 Mar; 20(7):1969-74. PubMed ID: 6261808 [TBL] [Abstract][Full Text] [Related]
58. A dynamic stereochemical reaction mechanism for the ATP synthesis reaction of mitochondrial oxidative phosphorylation. Korman EF; McLick J Proc Natl Acad Sci U S A; 1970 Nov; 67(3):1130-6. PubMed ID: 5274443 [TBL] [Abstract][Full Text] [Related]
59. Coupling of "high-energy" phosphate bonds to energy transductions. Boyer PD; Stokes BO; Wolcott RG; Degani C Fed Proc; 1975 Jul; 34(8):1711-7. PubMed ID: 124270 [TBL] [Abstract][Full Text] [Related]
60. Oxygen exchange in the gamma-phosphoryl group of protein-bound ATP during Mg2+-dependent adenosine triphosphatase activity of myosin. Bagshaw CR; Trentham DR; Wolcott RG; Boyer PD Proc Natl Acad Sci U S A; 1975 Jul; 72(7):2592-6. PubMed ID: 126449 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]