These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37905156)

  • 1. ChEC-seq2: an improved Chromatin Endogenous Cleavage sequencing method and bioinformatic analysis pipeline for mapping
    VanBelzen J; Duan C; Brickner DG; Brickner JH
    bioRxiv; 2023 Oct; ():. PubMed ID: 37905156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromatin endogenous cleavage provides a global view of RNA polymerase II transcription kinetics.
    VanBelzen J; Sakelaris B; Brickner DG; Marcou N; Riecke H; Mangan N; Brickner JH
    bioRxiv; 2024 Jul; ():. PubMed ID: 39026809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo.
    Zentner GE; Kasinathan S; Xin B; Rohs R; Henikoff S
    Nat Commun; 2015 Oct; 6():8733. PubMed ID: 26490019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide Mapping of Protein-DNA Interactions with ChEC-seq in Saccharomyces cerevisiae.
    Grünberg S; Zentner GE
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28605389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-Wide Profiling of Protein-DNA Interactions with Chromatin Endogenous Cleavage and High-Throughput Sequencing (ChEC-Seq ).
    Saleh MM; Tourigny JP; Zentner GE
    Methods Mol Biol; 2021; 2351():289-303. PubMed ID: 34382196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Resolution Genome-Wide Occupancy in
    Tebbji F; Khemiri I; Sellam A
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ChEC-Seq: A Comprehensive Guide for Scalable and Cost-Efficient Genome-Wide Profiling in Saccharomyces cerevisiae.
    Gera T; Kumar DK; Yaakov G; Barkai N; Jonas F
    Methods Mol Biol; 2024; 2846():263-283. PubMed ID: 39141241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin Endogenous Cleavage (ChEC) as a Method to Quantify Protein Interaction with Genomic DNA in Saccharomyces cerevisiae.
    Babl V; Stöckl U; Tschochner H; Milkereit P; Griesenbeck J
    Methods Mol Biol; 2015; 1334():219-32. PubMed ID: 26404153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ChIC and ChEC; genomic mapping of chromatin proteins.
    Schmid M; Durussel T; Laemmli UK
    Mol Cell; 2004 Oct; 16(1):147-57. PubMed ID: 15469830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites.
    Skene PJ; Henikoff S
    Elife; 2017 Jan; 6():. PubMed ID: 28079019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for generating high-resolution maps of genome-wide protein binding.
    Skene PJ; Henikoff S
    Elife; 2015 Jun; 4():e09225. PubMed ID: 26079792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A map of direct TF-DNA interactions in the human genome.
    Gheorghe M; Sandve GK; Khan A; Chèneby J; Ballester B; Mathelier A
    Nucleic Acids Res; 2019 Feb; 47(4):e21. PubMed ID: 30517703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous Mapping of DNA Binding and Nucleosome Positioning with SpLiT-ChEC.
    Banks OGB; Harms MJ; McKnight JN; McKnight LE
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription factor-binding k-mer analysis clarifies the cell type dependency of binding specificities and cis-regulatory SNPs in humans.
    Tahara S; Tsuchiya T; Matsumoto H; Ozaki H
    BMC Genomics; 2023 Oct; 24(1):597. PubMed ID: 37805453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data.
    Zhang L; Xue G; Liu J; Li Q; Wang Y
    BMC Genomics; 2018 Dec; 19(Suppl 10):914. PubMed ID: 30598100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans.
    Brdlik CM; Niu W; Snyder M
    Methods Enzymol; 2014; 539():89-111. PubMed ID: 24581441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Resolution Chromatin Profiling Using CUT&RUN.
    Hainer SJ; Fazzio TG
    Curr Protoc Mol Biol; 2019 Apr; 126(1):e85. PubMed ID: 30688406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-type specificity of ChIP-predicted transcription factor binding sites.
    Håndstad T; Rye M; Močnik R; Drabløs F; Sætrom P
    BMC Genomics; 2012 Aug; 13():372. PubMed ID: 22863112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioinformatic pipeline to analyze ChIP-exo datasets.
    Börlin CS; Bergenholm D; Holland P; Nielsen J
    Biol Methods Protoc; 2019; 4(1):bpz011. PubMed ID: 32395628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.