These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37905227)

  • 41. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Measurement of methyl axis orientations in invisible, excited states of proteins by relaxation dispersion NMR spectroscopy.
    Baldwin AJ; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2009 Aug; 131(33):11939-48. PubMed ID: 19627152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NMR phase noise in bitter magnets.
    Sigmund EE; Calder ES; Thomas GW; Mitrović VF; Bachman HN; Halperin WP; Kuhns PL; Reyes AP
    J Magn Reson; 2001 Feb; 148(2):309-13. PubMed ID: 11237636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rotamer Jumps, Proton Exchange, and Amine Inversion Dynamics of Dimethylated Lysine Residues in Proteins Resolved by pH-Dependent
    Weininger U; Modig K; Ishida H; Vogel HJ; Akke M
    J Phys Chem B; 2019 Nov; 123(46):9742-9750. PubMed ID: 31580078
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cross-correlated spin relaxation effects in methyl 1H CPMG-based relaxation dispersion experiments: complications and a simple solution.
    Korzhnev DM; Mittermaier AK; Kay LE
    J Biomol NMR; 2005 Apr; 31(4):337-42. PubMed ID: 15929000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the influence of initial magnetization conditions on extracted exchange parameters in NMR relaxation experiments: applications to CPMG and CEST.
    Yuwen T; Sekhar A; Kay LE
    J Biomol NMR; 2016 Aug; 65(3-4):143-156. PubMed ID: 27473413
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Magnetic relaxation in blood and blood clots.
    Bryant RG; Marill K; Blackmore C; Francis C
    Magn Reson Med; 1990 Jan; 13(1):133-44. PubMed ID: 2319929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Accuracy of optimized chemical-exchange parameters derived by fitting CPMG R2 dispersion profiles when R2(0a) not = R2(0b).
    Ishima R; Torchia DA
    J Biomol NMR; 2006 Apr; 34(4):209-19. PubMed ID: 16645811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters.
    Ishima R; Torchia DA
    J Biomol NMR; 2005 May; 32(1):41-54. PubMed ID: 16041482
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins.
    Gill ML; Palmer AG
    J Biomol NMR; 2011 Nov; 51(3):245-51. PubMed ID: 21918814
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative analysis of the slow exchange process by
    Toyama Y; Shimada I
    J Biomol NMR; 2024 Jun; ():. PubMed ID: 38918317
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by (15)N, (13)C(alpha) and (13)C-methyl relaxation dispersion and (1)H/(2)H-exchange NMR spectroscopy.
    Korzhnev DM; Religa TL; Lundström P; Fersht AR; Kay LE
    J Mol Biol; 2007 Sep; 372(2):497-512. PubMed ID: 17689561
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments.
    Reddy JG; Pratihar S; Ban D; Frischkorn S; Becker S; Griesinger C; Lee D
    J Biomol NMR; 2018 Jan; 70(1):1-9. PubMed ID: 29188417
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dependence of transverse relaxation time T2 of biologic tissues on the interpulse delay time in Carr-Purcell-Meiboom-Gill (CPMG) measurements.
    Shioya S; Kurita D; Haida M; Fukuzaki M; Tanigaki T; Kutsuzawa T; Ohta Y
    Tokai J Exp Clin Med; 1997 May; 22(2):27-31. PubMed ID: 9608628
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of specific protein association by 15N CPMG relaxation dispersion NMR: the GB1(A34F) monomer-dimer equilibrium.
    Jee J; Ishima R; Gronenborn AM
    J Phys Chem B; 2008 May; 112(19):6008-12. PubMed ID: 18004837
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Approximate analytical expressions for the Carr-Purcell-Meiboom-Gill sequences: Decay rates and modulation zeros of the echo train and the relation between the T
    Kandrashkin YE
    J Magn Reson; 2023 Jul; 352():107464. PubMed ID: 37148712
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Dreydoppel M; Lichtenecker RJ; Akke M; Weininger U
    J Biomol NMR; 2021 Dec; 75(10-12):383-392. PubMed ID: 34510298
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Site-resolved measurement of microsecond-to-millisecond conformational-exchange processes in proteins by solid-state NMR spectroscopy.
    Tollinger M; Sivertsen AC; Meier BH; Ernst M; Schanda P
    J Am Chem Soc; 2012 Sep; 134(36):14800-7. PubMed ID: 22908968
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.