These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 3790538)
1. Deuterium nuclear magnetic resonance spectroscopic study of the fluorescent probe diphenylhexatriene in model membrane systems. Kintanar A; Kunwar AC; Oldfield E Biochemistry; 1986 Oct; 25(21):6517-24. PubMed ID: 3790538 [TBL] [Abstract][Full Text] [Related]
2. The interaction of various cholesterol 'ancestors' with lipid membranes: a 2H-NMR study on oriented bilayers. Krajewski-Bertrand MA; Milon A; Nakatani Y; Ourisson G Biochim Biophys Acta; 1992 Apr; 1105(2):213-20. PubMed ID: 1586660 [TBL] [Abstract][Full Text] [Related]
3. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Urbina JA; Pekerar S; Le HB; Patterson J; Montez B; Oldfield E Biochim Biophys Acta; 1995 Sep; 1238(2):163-76. PubMed ID: 7548131 [TBL] [Abstract][Full Text] [Related]
4. Interactions of the local anesthetic tetracaine with membranes containing phosphatidylcholine and cholesterol: a 2H NMR study. Auger M; Jarrell HC; Smith IC Biochemistry; 1988 Jun; 27(13):4660-7. PubMed ID: 3167009 [TBL] [Abstract][Full Text] [Related]
5. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Weisz K; Gröbner G; Mayer C; Stohrer J; Kothe G Biochemistry; 1992 Feb; 31(4):1100-12. PubMed ID: 1734959 [TBL] [Abstract][Full Text] [Related]
6. A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region. Strenk LM; Westerman PW; Doane JW Biophys J; 1985 Nov; 48(5):765-73. PubMed ID: 4074836 [TBL] [Abstract][Full Text] [Related]
7. 2H NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes. Dufourc EJ; Smith IC Biochemistry; 1985 May; 24(10):2420-4. PubMed ID: 4016066 [TBL] [Abstract][Full Text] [Related]
8. Lipid bilayer perturbations induced by simple hydrophobic peptides. Jacobs RE; White SH Biochemistry; 1987 Sep; 26(19):6127-34. PubMed ID: 3689766 [TBL] [Abstract][Full Text] [Related]
9. Chain configuration and flexibility gradient in phospholipid membranes. Comparison between spin-label electron spin resonance and deuteron nuclear magnetic resonance, and identification of new conformations. Moser M; Marsh D; Meier P; Wassmer KH; Kothe G Biophys J; 1989 Jan; 55(1):111-23. PubMed ID: 2539207 [TBL] [Abstract][Full Text] [Related]
10. Anisotropy decay associated fluorescence spectra and analysis of rotational heterogeneity. 2. 1,6-Diphenyl-1,3,5-hexatriene in lipid bilayers. Davenport L; Knutson JR; Brand L Biochemistry; 1986 Apr; 25(7):1811-6. PubMed ID: 3754764 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Oldfield E; Meadows M; Rice D; Jacobs R Biochemistry; 1978 Jul; 17(14):2727-40. PubMed ID: 687560 [TBL] [Abstract][Full Text] [Related]
12. Deuterium magnetic resonance study of phase equilibria and membrane thickness in binary phospholipid mixed bilayers. Sankaram MB; Thompson TE Biochemistry; 1992 Sep; 31(35):8258-68. PubMed ID: 1525164 [TBL] [Abstract][Full Text] [Related]
13. Molecular motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Stockton GW; Polnaszek CF; Tulloch AP; Hasan F; Smith IC Biochemistry; 1976 Mar; 15(5):954-66. PubMed ID: 943179 [TBL] [Abstract][Full Text] [Related]
14. The effects of cholesterol on magnetically aligned phospholipid bilayers: a solid-state NMR and EPR spectroscopy study. Lu JX; Caporini MA; Lorigan GA J Magn Reson; 2004 May; 168(1):18-30. PubMed ID: 15082245 [TBL] [Abstract][Full Text] [Related]
15. A deuterium NMR and steady-state fluorescence anisotropy study of the effects of cholesterol on the lipid membrane-disordering actions of ethanol. Johnson DA; Valenzuela CF; Zidovetzki R Biochem Pharmacol; 1992 Aug; 44(4):769-74. PubMed ID: 1510724 [TBL] [Abstract][Full Text] [Related]
17. Amphotericin and model membranes. The effect of amphotericin B on cholesterol-containing systems as viewed by 2H-NMR. Dufourc EJ; Smith IC; Jarrell HC Biochim Biophys Acta; 1984 Oct; 776(2):317-29. PubMed ID: 6477913 [TBL] [Abstract][Full Text] [Related]
18. Resolving the two monolayers of a lipid bilayer in giant unilamellar vesicles using deuterium nuclear magnetic resonance. Marassi FM; Shivers RR; Macdonald PM Biochemistry; 1993 Sep; 32(38):9936-43. PubMed ID: 8399163 [TBL] [Abstract][Full Text] [Related]
20. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Bayerl TM; Bloom M Biophys J; 1990 Aug; 58(2):357-62. PubMed ID: 2207243 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]