These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Excited state potential energy surfaces of Knysh I; Letellier K; Duchemin I; Blase X; Jacquemin D Phys Chem Chem Phys; 2023 Mar; 25(12):8376-8385. PubMed ID: 36883347 [TBL] [Abstract][Full Text] [Related]
7. Exploring Bethe-Salpeter Excited-State Dipoles: The Challenging Case of Increasingly Long Push-Pull Oligomers. Knysh I; Villalobos-Castro JDJ; Duchemin I; Blase X; Jacquemin D J Phys Chem Lett; 2023 Apr; 14(15):3727-3734. PubMed ID: 37042642 [TBL] [Abstract][Full Text] [Related]
8. Modeling of excited state potential energy surfaces with the Bethe-Salpeter equation formalism: The 4-(dimethylamino)benzonitrile twist. Knysh I; Duchemin I; Blase X; Jacquemin D J Chem Phys; 2022 Nov; 157(19):194102. PubMed ID: 36414466 [TBL] [Abstract][Full Text] [Related]
9. Is the Bethe-Salpeter Formalism Accurate for Excitation Energies? Comparisons with TD-DFT, CASPT2, and EOM-CCSD. Jacquemin D; Duchemin I; Blase X J Phys Chem Lett; 2017 Apr; 8(7):1524-1529. PubMed ID: 28301726 [TBL] [Abstract][Full Text] [Related]
10. Combining Renormalized Singles Li J; Golze D; Yang W J Chem Theory Comput; 2022 Nov; 18(11):6637-6645. PubMed ID: 36279250 [TBL] [Abstract][Full Text] [Related]
11. Pros and Cons of the Bethe-Salpeter Formalism for Ground-State Energies. Loos PF; Scemama A; Duchemin I; Jacquemin D; Blase X J Phys Chem Lett; 2020 May; 11(9):3536-3545. PubMed ID: 32298578 [TBL] [Abstract][Full Text] [Related]
12. Bethe-Salpeter study of cationic dyes: Comparisons with ADC(2) and TD-DFT. Azarias C; Duchemin I; Blase X; Jacquemin D J Chem Phys; 2017 Jan; 146(3):034301. PubMed ID: 28109224 [TBL] [Abstract][Full Text] [Related]
13. Excited-State Geometry Optimization of Small Molecules with Many-Body Green's Functions Theory. Çaylak O; Baumeier B J Chem Theory Comput; 2021 Feb; 17(2):879-888. PubMed ID: 33399447 [TBL] [Abstract][Full Text] [Related]
14. Assessing the accuracy of TD-DFT excited-state geometries through optimal tuning with GW energy levels. Knysh I; Raimbault D; Duchemin I; Blase X; Jacquemin D J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38602292 [TBL] [Abstract][Full Text] [Related]
15. The Bethe-Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Blase X; Duchemin I; Jacquemin D Chem Soc Rev; 2018 Feb; 47(3):1022-1043. PubMed ID: 29250615 [TBL] [Abstract][Full Text] [Related]
16. Excited-State Dipole and Quadrupole Moments: TD-DFT versus CC2. Jacquemin D J Chem Theory Comput; 2016 Aug; 12(8):3993-4003. PubMed ID: 27385324 [TBL] [Abstract][Full Text] [Related]
17. Combining localized orbital scaling correction and Bethe-Salpeter equation for accurate excitation energies. Li J; Jin Y; Su NQ; Yang W J Chem Phys; 2022 Apr; 156(15):154101. PubMed ID: 35459294 [TBL] [Abstract][Full Text] [Related]
18. Communication: A hybrid Bethe-Salpeter/time-dependent density-functional-theory approach for excitation energies. Holzer C; Klopper W J Chem Phys; 2018 Sep; 149(10):101101. PubMed ID: 30219024 [TBL] [Abstract][Full Text] [Related]
19. Benchmark of Bethe-Salpeter for Triplet Excited-States. Jacquemin D; Duchemin I; Blondel A; Blase X J Chem Theory Comput; 2017 Feb; 13(2):767-783. PubMed ID: 28107000 [TBL] [Abstract][Full Text] [Related]
20. A combined solvatochromic shift and TDDFT study probing solute-solvent interactions of blue fluorescent Alexa Fluor 350 dye: Evaluation of ground and excited state dipole moments. Patil MK; Kotresh MG; Inamdar SR Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 215():142-152. PubMed ID: 30822733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]