These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37905396)

  • 21. Spin-Conserved and Spin-Flip Optical Excitations from the Bethe-Salpeter Equation Formalism.
    Monino E; Loos PF
    J Chem Theory Comput; 2021 May; 17(5):2852-2867. PubMed ID: 33724811
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accuracy Assessment of GW Starting Points for Calculating Molecular Excitation Energies Using the Bethe-Salpeter Formalism.
    Gui X; Holzer C; Klopper W
    J Chem Theory Comput; 2018 Apr; 14(4):2127-2136. PubMed ID: 29499116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the accuracy of computed excited-state dipole moments.
    King RA
    J Phys Chem A; 2008 Jun; 112(25):5727-33. PubMed ID: 18517183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.
    Jacquemin D; Duchemin I; Blondel A; Blase X
    J Chem Theory Comput; 2016 Aug; 12(8):3969-81. PubMed ID: 27403612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR Coupling Constants Based on the Bethe-Salpeter Equation in the
    Franzke YJ; Holzer C; Mack F
    J Chem Theory Comput; 2022 Feb; 18(2):1030-1045. PubMed ID: 34981925
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How accurate are TD-DFT excited-state geometries compared to DFT ground-state geometries?
    Wang J; Durbeej B
    J Comput Chem; 2020 Jul; 41(18):1718-1729. PubMed ID: 32323870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the Role of the Kohn-Sham Density in the Calculation of the Low-Lying Bethe-Salpeter Excitation Energies.
    Kshirsagar AR; Poloni R
    J Phys Chem A; 2023 Mar; 127(11):2618-2627. PubMed ID: 36913525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarks for electronically excited states: time-dependent density functional theory and density functional theory based multireference configuration interaction.
    Silva-Junior MR; Schreiber M; Sauer SP; Thiel W
    J Chem Phys; 2008 Sep; 129(10):104103. PubMed ID: 19044904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasiparticle Self-Consistent
    Förster A; Visscher L
    J Chem Theory Comput; 2022 Nov; 18(11):6779-6793. PubMed ID: 36201788
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lagrangian Z-vector approach to Bethe-Salpeter analytic gradients: Assessing approximations.
    Villalobos-Castro J; Knysh I; Jacquemin D; Duchemin I; Blase X
    J Chem Phys; 2023 Jul; 159(2):. PubMed ID: 37431907
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benchmarking Density Functional Approximations for Excited-State Properties of Fluorescent Dyes.
    Grabarz AM; Ośmiałowski B
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Bethe-Salpeter Equation Formalism: From Physics to Chemistry.
    Blase X; Duchemin I; Jacquemin D; Loos PF
    J Phys Chem Lett; 2020 Sep; 11(17):7371-7382. PubMed ID: 32787315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An optimally tuned range-separated hybrid starting point for ab initio GW plus Bethe-Salpeter equation calculations of molecules.
    McKeon CA; Hamed SM; Bruneval F; Neaton JB
    J Chem Phys; 2022 Aug; 157(7):074103. PubMed ID: 35987597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of charge-transfer excitations with time-dependent, range-separated density functional theory based on long-range MP2 and multiconfigurational self-consistent field wave functions.
    Hedegård ED; Heiden F; Knecht S; Fromager E; Jensen HJ
    J Chem Phys; 2013 Nov; 139(18):184308. PubMed ID: 24320275
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Bethe-Salpeter formalism with polarisable continuum embedding: reconciling linear-response and state-specific features.
    Duchemin I; Guido CA; Jacquemin D; Blase X
    Chem Sci; 2018 May; 9(19):4430-4443. PubMed ID: 29896384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Helium Atom Excitations by the GW and Bethe-Salpeter Many-Body Formalism.
    Li J; Holzmann M; Duchemin I; Blase X; Olevano V
    Phys Rev Lett; 2017 Apr; 118(16):163001. PubMed ID: 28474954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitation Energies from the Single-Particle Green's Function with the GW Approximation.
    Jin Y; Yang W
    J Phys Chem A; 2019 Apr; 123(14):3199-3204. PubMed ID: 30920830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening mixing GW/Bethe-Salpeter approach for triplet states of organic molecules.
    Ziaei V; Bredow T
    J Phys Condens Matter; 2018 Oct; 30(39):395501. PubMed ID: 30124435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.
    Li Z; Liu W
    J Chem Theory Comput; 2016 Jan; 12(1):238-60. PubMed ID: 26672389
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast and Accurate Electronic Excitations in Cyanines with the Many-Body Bethe-Salpeter Approach.
    Boulanger P; Jacquemin D; Duchemin I; Blase X
    J Chem Theory Comput; 2014 Mar; 10(3):1212-8. PubMed ID: 26580191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.