These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers. Ximendes EC; Santos WQ; Rocha U; Kagola UK; Sanz-Rodríguez F; Fernández N; Gouveia-Neto Ada S; Bravo D; Domingo AM; del Rosal B; Brites CD; Carlos LD; Jaque D; Jacinto C Nano Lett; 2016 Mar; 16(3):1695-703. PubMed ID: 26845418 [TBL] [Abstract][Full Text] [Related]
5. Standardizing luminescence nanothermometry for biomedical applications. Bednarkiewicz A; Marciniak L; Carlos LD; Jaque D Nanoscale; 2020 Jul; 12(27):14405-14421. PubMed ID: 32633305 [TBL] [Abstract][Full Text] [Related]
6. Challenges for optical nanothermometry in biological environments. Quintanilla M; Henriksen-Lacey M; Renero-Lecuna C; Liz-Marzán LM Chem Soc Rev; 2022 Jun; 51(11):4223-4242. PubMed ID: 35587578 [TBL] [Abstract][Full Text] [Related]
7. Lanthanide doped nanoparticles for reliable and precise luminescence nanothermometry in the third biological window. Soares ACC; Sales TO; Ximendes EC; Jaque D; Jacinto C Nanoscale Adv; 2023 Jul; 5(14):3664-3670. PubMed ID: 37441248 [TBL] [Abstract][Full Text] [Related]
8. Reliability of rare-earth-doped infrared luminescent nanothermometers. Labrador-Páez L; Pedroni M; Speghini A; García-Solé J; Haro-González P; Jaque D Nanoscale; 2018 Dec; 10(47):22319-22328. PubMed ID: 30468230 [TBL] [Abstract][Full Text] [Related]
9. NIR luminescence lifetime nanothermometry based on phonon assisted Yb Maciejewska K; Bednarkiewicz A; Marciniak L Nanoscale Adv; 2021 Aug; 3(17):4918-4925. PubMed ID: 36132339 [TBL] [Abstract][Full Text] [Related]
10. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769 [TBL] [Abstract][Full Text] [Related]
11. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Wu Y; Li F; Wu Y; Wang H; Gu L; Zhang J; Qi Y; Meng L; Kong N; Chai Y; Hu Q; Xing Z; Ren W; Li F; Zhu X Nat Commun; 2024 Mar; 15(1):2341. PubMed ID: 38491065 [TBL] [Abstract][Full Text] [Related]
12. Reliable and Remote Monitoring of Absolute Temperature during Liver Inflammation via Luminescence-Lifetime-Based Nanothermometry. Shen Y; Lifante J; Zabala-Gutierrez I; de la Fuente-Fernández M; Granado M; Fernández N; Rubio-Retama J; Jaque D; Marin R; Ximendes E; Benayas A Adv Mater; 2022 Feb; 34(7):e2107764. PubMed ID: 34826883 [TBL] [Abstract][Full Text] [Related]
13. Thermoresponsive Polymeric Nanolenses Magnify the Thermal Sensitivity of Single Upconverting Nanoparticles. Lu D; Retama JR; Marin R; Marqués MI; Calderón OG; Melle S; Haro-González P; Jaque D Small; 2022 Aug; 18(34):e2202452. PubMed ID: 35908155 [TBL] [Abstract][Full Text] [Related]
14. Shell Engineering on Thermal Sensitivity of Lifetime-Based NIR Nanothermometers for Accurate Temperature Measurement in Murine Internal Liver Organ. Wu L; Jia M; Li D; Chen G Nano Lett; 2023 Apr; 23(7):2862-2869. PubMed ID: 36926957 [TBL] [Abstract][Full Text] [Related]
15. Ultrasensitive NIR-II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging. Li D; Jia M; Jia T; Chen G Adv Mater; 2024 Mar; 36(11):e2309452. PubMed ID: 38088453 [TBL] [Abstract][Full Text] [Related]
16. Engineering efficient upconverting nanothermometers using Eu Lucchini G; Speghini A; Canton P; Vetrone F; Quintanilla M Nanoscale Adv; 2019 Feb; 1(2):757-764. PubMed ID: 36132267 [TBL] [Abstract][Full Text] [Related]
17. Accurate In Vivo Nanothermometry through NIR-II Lanthanide Luminescence Lifetime. Tan M; Li F; Cao N; Li H; Wang X; Zhang C; Jaque D; Chen G Small; 2020 Dec; 16(48):e2004118. PubMed ID: 33155363 [TBL] [Abstract][Full Text] [Related]