These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3790549)

  • 1. Oxidation-reduction potentials of butyryl-CoA dehydrogenase.
    Fink CW; Stankovich MT; Soltysik S
    Biochemistry; 1986 Oct; 25(21):6637-43. PubMed ID: 3790549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the butyryl-CoA dehydrogenase by substrate and product binding.
    Stankovich MT; Soltysik S
    Biochemistry; 1987 May; 26(9):2627-32. PubMed ID: 3607039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox properties of electron-transferring flavoprotein from Megasphaera elsdenii.
    Pace CP; Stankovich MT
    Biochim Biophys Acta; 1987 Feb; 911(3):267-76. PubMed ID: 3814604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyryl-CoA dehydrogenase from Megasphaera elsdenii. Specificity of the catalytic reaction.
    Williamson G; Engel PC
    Biochem J; 1984 Mar; 218(2):521-9. PubMed ID: 6712628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid-reaction kinetics of the butyryl-CoA dehydrogenase component of the electron-bifurcating crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from Megasphaera elsdenii.
    Vigil W; Nguyen D; Niks D; Hille R
    J Biol Chem; 2023 Jul; 299(7):104853. PubMed ID: 37220854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and electrochemical properties of glutaryl-CoA dehydrogenase from Paracoccus denitrificans.
    Byron CM; Stankovich MT; Husain M
    Biochemistry; 1990 Apr; 29(15):3691-700. PubMed ID: 2340266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of aromatic stacking interactions in the modulation of the two-electron reduction potentials of flavin and substrate/product in Megasphaera elsdenii short-chain acyl-coenzyme A dehydrogenase.
    Pellett JD; Becker DF; Saenger AK; Fuchs JA; Stankovich MT
    Biochemistry; 2001 Jun; 40(25):7720-8. PubMed ID: 11412126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale preparation and reconstitution of apo-flavoproteins with special reference to butyryl-CoA dehydrogenase from Megasphaera elsdenii. Hydrophobic-interaction chromatography.
    Van Berkel WJ; Van den Berg WA; Müller F
    Eur J Biochem; 1988 Dec; 178(1):197-207. PubMed ID: 3203689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic crotonase activity in a bacterial butyryl-CoA dehydrogenase.
    Ellison PA; Engel PC
    Biochem Mol Biol Int; 1993 Mar; 29(4):605-12. PubMed ID: 8490573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Product binding modulates the thermodynamic properties of a Megasphaera elsdenii short-chain acyl-CoA dehydrogenase active-site mutant.
    Becker DF; Fuchs JA; Stankovich MT
    Biochemistry; 1994 Jun; 33(23):7082-7. PubMed ID: 8003473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation-reduction properties of short-chain acyl-CoA dehydrogenase: effects of substrate analogs.
    Pace CP; Stankovich MT
    Arch Biochem Biophys; 1994 Sep; 313(2):261-6. PubMed ID: 8080271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of ferredoxin or oxygen by flavin-based electron bifurcation in Megasphaera elsdenii.
    Chowdhury NP; Kahnt J; Buckel W
    FEBS J; 2015 Aug; 282(16):3149-60. PubMed ID: 25903584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of action of glutaryl-CoA and butyryl-CoA dehydrogenases. Purification of glutaryl-CoA dehydrogenase.
    Gomes B; Fendrich G; Abeles RH
    Biochemistry; 1981 Mar; 20(6):1481-90. PubMed ID: 6261796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation-reduction of general acyl-CoA dehydrogenase by the butyryl-CoA/crotonyl-CoA couple. A new investigation of the rapid reaction kinetics.
    Schopfer LM; Massey V; Ghisla S; Thorpe C
    Biochemistry; 1988 Aug; 27(17):6599-611. PubMed ID: 3219356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of electron-transfer properties of salicylate hydroxylase from Pseudomonas cepacia and effects of salicylate and benzoate binding.
    Einarsdottir GH; Stankovich MT; Tu SC
    Biochemistry; 1988 May; 27(9):3277-85. PubMed ID: 3390431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and properties of the flavoenzyme D-lactate dehydrogenase from Megasphaera elsdenii.
    Olson ST; Massey V
    Biochemistry; 1979 Oct; 18(21):4714-24. PubMed ID: 497162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of action of butyryl-CoA dehydrogenase: reactions with acetylenic, olefinic, and fluorinated substrate analogues.
    Fendrich G; Abeles RH
    Biochemistry; 1982 Dec; 21(26):6685-95. PubMed ID: 7159554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton abstraction reaction, steady-state kinetics, and oxidation-reduction potential of human glutaryl-CoA dehydrogenase.
    Dwyer TM; Rao KS; Goodman SI; Frerman FE
    Biochemistry; 2000 Sep; 39(37):11488-99. PubMed ID: 10985795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD-independent lactate and butyryl-CoA dehydrogenases of Clostridium acetobutylicum P262.
    Diez-Gonzalez F; Russell JB; Hunter JB
    Curr Microbiol; 1997 Mar; 34(3):162-6. PubMed ID: 9009069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic regulation of human short-chain acyl-CoA dehydrogenase by substrate and product binding.
    Saenger AK; Nguyen TV; Vockley J; Stankovich MT
    Biochemistry; 2005 Dec; 44(49):16043-53. PubMed ID: 16331964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.