These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 3790553)

  • 21. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins.
    Druckmann S; Ottolenghi M; Rousso I; Friedman N; Sheves M
    Biochemistry; 1995 Sep; 34(37):12066-74. PubMed ID: 7547945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the retinal chromophore in the hR578 form of halorhodopsin.
    Smith SO; Marvin MJ; Bogomolni RA; Mathies RA
    J Biol Chem; 1984 Oct; 259(20):12326-9. PubMed ID: 6490613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.
    Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-driven proton or chloride pumping by halorhodopsin.
    Bamberg E; Tittor J; Oesterhelt D
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):639-43. PubMed ID: 8380643
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photoreactions of bacteriorhodopsin at acid pH.
    Váró G; Lanyi JK
    Biophys J; 1989 Dec; 56(6):1143-51. PubMed ID: 2611328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism.
    Lanyi JK; Duschl A; Váro G; Zimányi L
    FEBS Lett; 1990 Jun; 265(1-2):1-6. PubMed ID: 1694779
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin.
    Lanyi JK
    Biochim Biophys Acta; 1993 Dec; 1183(2):241-61. PubMed ID: 8268193
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A large photolysis-induced pKa increase of the chromophore counterion in bacteriorhodopsin: implications for ion transport mechanisms of retinal proteins.
    Braiman MS; Dioumaev AK; Lewis JR
    Biophys J; 1996 Feb; 70(2):939-47. PubMed ID: 8789111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial pigments of halorhodopsin and their chloride pumping activities.
    Iwasa T
    Biochemistry; 1992 Feb; 31(4):1190-5. PubMed ID: 1310422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of Halobacterium salinarum halorhodopsin with a partially depopulated primary chloride-binding site.
    Schreiner M; Schlesinger R; Heberle J; Niemann HH
    Acta Crystallogr F Struct Biol Commun; 2016 Sep; 72(Pt 9):692-9. PubMed ID: 27599860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping.
    Longstaff C; Rando RR
    Biochemistry; 1987 Sep; 26(19):6107-13. PubMed ID: 2825771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn.
    Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG
    J Biol Chem; 1992 Aug; 267(24):16922-7. PubMed ID: 1512233
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base.
    Walter TJ; Braiman MS
    Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin.
    Kolodner P; Lukashev EP; Ching YC; Rousseau DL
    Proc Natl Acad Sci U S A; 1996 Oct; 93(21):11618-21. PubMed ID: 8876185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy.
    Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A
    Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of the azide-dependent bacteriorhodopsin-like photocycle of salinarum halorhodopsin.
    Lakatos M; Groma GI; Ganea C; Lanyi JK; Váró G
    Biophys J; 2002 Apr; 82(4):1687-95. PubMed ID: 11916830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared spectroscopic demonstration of a conformational change in bacteriorhodopsin involved in proton pumping.
    Ormos P
    Proc Natl Acad Sci U S A; 1991 Jan; 88(2):473-7. PubMed ID: 1846442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.
    Zadok U; Asato AE; Sheves M
    Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The protonation-deprotonation kinetics of the protonated Schiff base in bicelle bacteriorhodopsin crystals.
    Sanii LS; Schill AW; Moran CE; El-Sayed MA
    Biophys J; 2005 Jul; 89(1):444-51. PubMed ID: 15821169
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.