These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Two Mechanisms of Tip Enhancement of Raman Scattering by Protein Aggregates. Sereda V; Lednev IK Appl Spectrosc; 2017 Jan; 71(1):118-128. PubMed ID: 27407009 [TBL] [Abstract][Full Text] [Related]
7. Cofactors are essential constituents of stable and seeding-active tau fibrils. Fichou Y; Lin Y; Rauch JN; Vigers M; Zeng Z; Srivastava M; Keller TJ; Freed JH; Kosik KS; Han S Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13234-13239. PubMed ID: 30538196 [TBL] [Abstract][Full Text] [Related]
8. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Bonhommeau S; Cooney GS; Huang Y Chem Soc Rev; 2022 Apr; 51(7):2416-2430. PubMed ID: 35275147 [TBL] [Abstract][Full Text] [Related]
9. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation. Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680 [TBL] [Abstract][Full Text] [Related]
10. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering. Deckert-Gaudig T; Kämmer E; Deckert V J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749 [TBL] [Abstract][Full Text] [Related]
11. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS). Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK Biophys J; 2014 Jan; 106(1):263-71. PubMed ID: 24411258 [TBL] [Abstract][Full Text] [Related]
12. Cryo-EM structure of RNA-induced tau fibrils reveals a small C-terminal core that may nucleate fibril formation. Abskharon R; Sawaya MR; Boyer DR; Cao Q; Nguyen BA; Cascio D; Eisenberg DS Proc Natl Acad Sci U S A; 2022 Apr; 119(15):e2119952119. PubMed ID: 35377792 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Hyperspectral Imaging of Amyloid Secondary Structures in Liquid. Lipiec E; Kaderli J; Kobierski J; Riek R; Skirlińska-Nosek K; Sofińska K; Szymoński M; Zenobi R Angew Chem Int Ed Engl; 2021 Feb; 60(9):4545-4550. PubMed ID: 32964527 [TBL] [Abstract][Full Text] [Related]
14. Tip-Enhanced Raman Spectroscopy: A Tool for Nanoscale Chemical and Structural Characterization of Biomolecules. Bonhommeau S; Lecomte S Chemphyschem; 2018 Jan; 19(1):8-18. PubMed ID: 29106771 [TBL] [Abstract][Full Text] [Related]
15. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism. VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391 [TBL] [Abstract][Full Text] [Related]
16. Tip-Enhanced Raman Spectroscopy to Distinguish Toxic Oligomers from Aβ Bonhommeau S; Talaga D; Hunel J; Cullin C; Lecomte S Angew Chem Int Ed Engl; 2017 Feb; 56(7):1771-1774. PubMed ID: 28071842 [TBL] [Abstract][Full Text] [Related]
17. Nanoscale Chemical Imaging of Human Cell Membranes Using Tip-Enhanced Raman Spectroscopy. Mrđenović D; Ge W; Kumar N; Zenobi R Angew Chem Int Ed Engl; 2022 Oct; 61(43):e202210288. PubMed ID: 36057139 [TBL] [Abstract][Full Text] [Related]
18. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and Tip-Enhanced Raman Scattering studies. Krasnoslobodtsev AV; Deckert-Gaudig T; Zhang Y; Deckert V; Lyubchenko YL Ultramicroscopy; 2016 Jun; 165():26-33. PubMed ID: 27060278 [TBL] [Abstract][Full Text] [Related]
19. Structure and composition of insulin fibril surfaces probed by TERS. Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355 [TBL] [Abstract][Full Text] [Related]
20. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Kurouski D; Van Duyne RP; Lednev IK Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]