These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. McMillan-Mayer theory of solutions revisited: simplifications and extensions. Vafaei S; Tomberli B; Gray CG J Chem Phys; 2014 Oct; 141(15):154501. PubMed ID: 25338903 [TBL] [Abstract][Full Text] [Related]
8. On the behavior of the osmotic second virial coefficients of gases in aqueous solutions: Rigorous results, accurate approximations, and experimental evidence. Chialvo AA; Crisalle OD J Chem Phys; 2019 Mar; 150(12):124503. PubMed ID: 30927890 [TBL] [Abstract][Full Text] [Related]
9. Comparison of non-ideal solution theories for multi-solute solutions in cryobiology and tabulation of required coefficients. Zielinski MW; McGann LE; Nychka JA; Elliott JA Cryobiology; 2014 Oct; 69(2):305-17. PubMed ID: 25158101 [TBL] [Abstract][Full Text] [Related]
10. Osmotic virial coefficients of hydroxyethyl starch from aqueous hydroxyethyl starch-sodium chloride vapor pressure osmometry. Cheng J; Gier M; Ross-Rodriguez LU; Prasad V; Elliott JA; Sputtek A J Phys Chem B; 2013 Sep; 117(35):10231-40. PubMed ID: 23862979 [TBL] [Abstract][Full Text] [Related]
11. Solubility of hydrophobic organic pollutants in binary and multicomponent aqueous solvents. Ruckenstein E; Shulgin I Environ Sci Technol; 2005 Mar; 39(6):1623-31. PubMed ID: 15819218 [TBL] [Abstract][Full Text] [Related]
12. Nonideal Solute Chemical Potential Equation and the Validity of the Grouped Solute Approach for Intracellular Solution Thermodynamics. Zielinski MW; McGann LE; Nychka JA; Elliott JAW J Phys Chem B; 2017 Nov; 121(46):10443-10456. PubMed ID: 29115839 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the Osmotic Virial Equation with the Margules Activity Model for Solid-Liquid Equilibrium. Zargarzadeh L; Elliott JAW J Phys Chem B; 2019 Feb; 123(5):1099-1107. PubMed ID: 30672277 [TBL] [Abstract][Full Text] [Related]
14. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State. CerdeiriƱa CA; Widom B J Phys Chem B; 2016 Dec; 120(51):13144-13151. PubMed ID: 27982603 [TBL] [Abstract][Full Text] [Related]
15. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective. McBride DW; Rodgers VG Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326 [TBL] [Abstract][Full Text] [Related]
16. Application of the multisolute osmotic virial equation to solutions containing electrolytes. Prickett RC; Elliott JA; McGann LE J Phys Chem B; 2011 Dec; 115(49):14531-43. PubMed ID: 22004311 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamic studies of molecular interactions in aqueous alpha-cyclodextrin solutions: application of McMillan-Mayer and Kirkwood-Buff theories. Terdale SS; Dagade DH; Patil KJ J Phys Chem B; 2006 Sep; 110(37):18583-93. PubMed ID: 16970487 [TBL] [Abstract][Full Text] [Related]
18. Deriving Second Osmotic Virial Coefficients from Equations of State and from Experiment. Koga K; Holten V; Widom B J Phys Chem B; 2015 Oct; 119(42):13391-7. PubMed ID: 26378689 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of Osmotic Virial Coefficients via Restricted Gibbs Ensemble Simulations, with Support from Gas-Phase Mixture Coefficients. Bansal A; Schultz AJ; Kofke DA J Phys Chem B; 2021 Jul; 125(26):7262-7272. PubMed ID: 34165311 [TBL] [Abstract][Full Text] [Related]
20. An isotherm-based thermodynamic model of multicomponent aqueous solutions, applicable over the entire concentration range. Dutcher CS; Ge X; Wexler AS; Clegg SL J Phys Chem A; 2013 Apr; 117(15):3198-213. PubMed ID: 23566232 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]