These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 37906160)

  • 1. First-Principles Prediction of Amorphous Silica Nanoparticle Surface Charge: Effect of Size, pH, and Ionic Strength.
    Nazemzadeh N; Miranda CR; Liang Y; Andersson MP
    J Phys Chem B; 2023 Nov; 127(44):9608-9619. PubMed ID: 37906160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.
    Das PK
    Electrophoresis; 2016 Jan; 37(2):347-55. PubMed ID: 26530465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.
    Ovanesyan Z; Aljzmi A; Almusaynid M; Khan A; Valderrama E; Nash KL; Marucho M
    J Colloid Interface Sci; 2016 Jan; 462():325-33. PubMed ID: 26476201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between Charge-Regulated Metal Nanoparticles in an Electrolyte Solution.
    Bakhshandeh A; Dos Santos AP; Levin Y
    J Phys Chem B; 2020 Dec; 124(51):11762-11770. PubMed ID: 33300347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes--a Monte Carlo approach.
    Clavier A; Seijo M; Carnal F; Stoll S
    Phys Chem Chem Phys; 2015 Feb; 17(6):4346-53. PubMed ID: 25579770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical basis for the formation and stability of silica nanoparticles in basic solutions of monovalent cations.
    Rimer JD; Lobo RF; Vlachos DG
    Langmuir; 2005 Sep; 21(19):8960-71. PubMed ID: 16142985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of silica nanoparticle geometry on the interfacial interactions of organic molecules: a molecular dynamics study.
    Rama P; Abbas Z
    Phys Chem Chem Phys; 2022 Feb; 24(6):3713-3721. PubMed ID: 35080551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competing effects of silanol surface concentration and solvent dielectric constant on electrostatic layer-by-layer assembly of silica nanoparticles on gold.
    Yang R; Wang F; Blunk RH; Angelopoulos AP
    J Colloid Interface Sci; 2010 Sep; 349(1):148-52. PubMed ID: 20542280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Dissociated Amorphous Silica Surface: Model Development and Evaluation.
    Hassanali AA; Zhang H; Knight C; Shin YK; Singer SJ
    J Chem Theory Comput; 2010 Nov; 6(11):3456-71. PubMed ID: 26617097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions.
    Li YV; Cathles LM
    J Colloid Interface Sci; 2014 Dec; 436():1-8. PubMed ID: 25259754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.
    Zharov I; Khabibullin A
    Acc Chem Res; 2014 Feb; 47(2):440-9. PubMed ID: 24397245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes.
    Guerrero García GI; Olvera de la Cruz M
    J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear charge regulation for the deposition of silica nanoparticles on polystyrene spherical surfaces.
    Choi S; Vazquez-Duhalt R; Graeve OA
    J Colloid Interface Sci; 2022 May; 613():747-763. PubMed ID: 35066233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore size effects on surface charges and interfacial electrostatics of mesoporous silicas.
    Murota K; Saito T
    Phys Chem Chem Phys; 2022 Aug; 24(30):18073-18082. PubMed ID: 35876621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical model for charge properties of silica particles.
    Atalay S; Ma Y; Qian S
    J Colloid Interface Sci; 2014 Jul; 425():128-30. PubMed ID: 24776673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of the intrinsically disordered saliva protein histatin 5 to silica surfaces. A Monte Carlo simulation and ellipsometry study.
    Hyltegren K; Nylander T; Lund M; Skepö M
    J Colloid Interface Sci; 2016 Apr; 467():280-290. PubMed ID: 26809106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-Dependent Protein Adsorption on a Nanoparticle.
    Canpolat C; Tatlisoz MM
    IEEE Trans Nanobioscience; 2023 Jul; 22(3):597-602. PubMed ID: 36350860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A modified Poisson-Boltzmann model including charge regulation for the adsorption of ionizable polyelectrolytes to charged interfaces, applied to lysozyme adsorption on silica.
    Biesheuvel PM; van der Veen M; Norde W
    J Phys Chem B; 2005 Mar; 109(9):4172-80. PubMed ID: 16851479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation.
    Ewing CS; Bhavsar S; Veser G; McCarthy JJ; Johnson JK
    Langmuir; 2014 May; 30(18):5133-41. PubMed ID: 24793021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.