These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 37906440)

  • 1. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules.
    Peschke F; Taladriz-Sender A; Andrews MJ; Watson AJB; Burley GA
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202313063. PubMed ID: 37906440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione Mediates Control of Dual Differential Bio-orthogonal Labelling of Biomolecules.
    Peschke F; Taladriz-Sender A; Andrews MJ; Watson AJB; Burley GA
    Angew Chem Weinheim Bergstr Ger; 2023 Dec; 135(50):e202313063. PubMed ID: 38515866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A flow platform for degradation-free CuAAC bioconjugation.
    Hatit MZC; Reichenbach LF; Tobin JM; Vilela F; Burley GA; Watson AJB
    Nat Commun; 2018 Oct; 9(1):4021. PubMed ID: 30275543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Basis of the Cu(OAc)
    Bunschoten RP; Peschke F; Taladriz-Sender A; Alexander E; Andrews MJ; Kennedy AR; Fazakerley NJ; Lloyd Jones GC; Watson AJB; Burley GA
    J Am Chem Soc; 2024 May; 146(19):13558-13570. PubMed ID: 38712910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategy for Conditional Orthogonal Sequential CuAAC Reactions Using a Protected Aromatic Ynamine.
    Hatit MZC; Seath CP; Watson AJB; Burley GA
    J Org Chem; 2017 May; 82(10):5461-5468. PubMed ID: 28452225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC)-Mediated Macrocyclization of Peptides: Impact on Conformation and Biological Activity.
    Testa C; Papini AM; Chorev M; Rovero P
    Curr Top Med Chem; 2018; 18(7):591-610. PubMed ID: 29773065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of bioorthogonal reactions with azides.
    Agard NJ; Baskin JM; Prescher JA; Lo A; Bertozzi CR
    ACS Chem Biol; 2006 Nov; 1(10):644-8. PubMed ID: 17175580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal control of the alkyne-azide cycloaddition by photoinitiated Cu(II) reduction.
    Adzima BJ; Tao Y; Kloxin CJ; DeForest CA; Anseth KS; Bowman CN
    Nat Chem; 2011 Mar; 3(3):256-59. PubMed ID: 21336334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-terminal incorporation of bio-orthogonal azide groups into a protein and preparation of protein-oligodeoxynucleotide conjugates by Cu'-catalyzed cycloaddition.
    Humenik M; Huang Y; Wang Y; Sprinzl M
    Chembiochem; 2007 Jul; 8(10):1103-6. PubMed ID: 17557370
    [No Abstract]   [Full Text] [Related]  

  • 11. Accelerating Strain-Promoted Azide-Alkyne Cycloaddition Using Micellar Catalysis.
    Anderton GI; Bangerter AS; Davis TC; Feng Z; Furtak AJ; Larsen JO; Scroggin TL; Heemstra JM
    Bioconjug Chem; 2015 Aug; 26(8):1687-91. PubMed ID: 26056848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophilic Azides for Materials Synthesis and Chemical Biology.
    Xie S; Sundhoro M; Houk KN; Yan M
    Acc Chem Res; 2020 Apr; 53(4):937-948. PubMed ID: 32207916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Conjugation to Phosphorothioate Oligonucleotides by Cu-Catalyzed Huisgen 1,3-Dipolar Cycloaddition.
    Honcharenko M; Honcharenko D; Strömberg R
    Bioconjug Chem; 2019 Jun; 30(6):1622-1628. PubMed ID: 31067031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The first "ready-to-use" benzene-based heterotrifunctional cross-linker for multiple bioconjugation.
    Viault G; Dautrey S; Maindron N; Hardouin J; Renard PY; Romieu A
    Org Biomol Chem; 2013 Apr; 11(16):2693-705. PubMed ID: 23474872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoenzymatic bio-orthogonal chemistry for site-specific double modification of recombinant thrombomodulin.
    Jiang R; Wang L; Weingart J; Sun XL
    Chembiochem; 2014 Jan; 15(1):42-6. PubMed ID: 24357004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide macrocyclisation
    Bell HJ; Malins LR
    Org Biomol Chem; 2022 Aug; 20(31):6250-6256. PubMed ID: 35621075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions.
    Zhang X; Liu P; Zhu L
    Molecules; 2016 Dec; 21(12):. PubMed ID: 27941684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase.
    Castro V; Rodríguez H; Albericio F
    ACS Comb Sci; 2016 Jan; 18(1):1-14. PubMed ID: 26652044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress of Cu-Catalyzed Azide-Alkyne Cycloaddition Reactions (CuAAC) in Sustainable Solvents: Glycerol, Deep Eutectic Solvents, and Aqueous Media.
    Nebra N; García-Álvarez J
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32357387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliable and efficient procedures for the conjugation of biomolecules through Huisgen azide-alkyne cycloadditions.
    Lallana E; Riguera R; Fernandez-Megia E
    Angew Chem Int Ed Engl; 2011 Sep; 50(38):8794-804. PubMed ID: 21905176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.