BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37906544)

  • 1. Intermediate gray matter interneurons in the lumbar spinal cord play a critical and necessary role in coordinated locomotion.
    Kuehn N; Schwarz A; Beretta CA; Schwarte Y; Schmitt F; Motsch M; Weidner N; Puttagunta R
    PLoS One; 2023; 18(10):e0291740. PubMed ID: 37906544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Localization of last-order premotor interneurons in the lumbar spinal cord of rats.
    Puskár Z; Antal M
    J Comp Neurol; 1997 Dec; 389(3):377-89. PubMed ID: 9414001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field potential mapping of neurons in the lumbar spinal cord activated following stimulation of the mesencephalic locomotor region.
    Noga BR; Fortier PA; Kriellaars DJ; Dai X; Detillieux GR; Jordan LM
    J Neurosci; 1995 Mar; 15(3 Pt 2):2203-17. PubMed ID: 7891162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional consequences of lumbar spinal cord contusion injuries in the adult rat.
    Magnuson DS; Lovett R; Coffee C; Gray R; Han Y; Zhang YP; Burke DA
    J Neurotrauma; 2005 May; 22(5):529-43. PubMed ID: 15892599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-enlargement pathways in the ventrolateral funiculus of the adult rat spinal cord.
    Reed WR; Shum-Siu A; Onifer SM; Magnuson DS
    Neuroscience; 2006 Nov; 142(4):1195-207. PubMed ID: 16938403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y; Preston C; Zhong H; Roy RR; Edgerton VR; Shah PK
    J Neurophysiol; 2019 Aug; 122(2):585-600. PubMed ID: 30943092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat.
    Magnuson DS; Trinder TC; Zhang YP; Burke D; Morassutti DJ; Shields CB
    Exp Neurol; 1999 Mar; 156(1):191-204. PubMed ID: 10192790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long ascending propriospinal projections from lumbosacral to upper cervical spinal cord in the rat.
    Dutton RC; Carstens MI; Antognini JF; Carstens E
    Brain Res; 2006 Nov; 1119(1):76-85. PubMed ID: 16996042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid recovery and altered neurochemical dependence of locomotor central pattern generation following lumbar neonatal spinal cord injury.
    Züchner M; Kondratskaya E; Sylte CB; Glover JC; Boulland JL
    J Physiol; 2018 Jan; 596(2):281-303. PubMed ID: 29086918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retrogradely Transportable Lentivirus Tracers for Mapping Spinal Cord Locomotor Circuits.
    Sheikh IS; Keefe KM; Sterling NA; Junker IP; Eneanya CI; Liu Y; Tang XQ; Smith GM
    Front Neural Circuits; 2018; 12():60. PubMed ID: 30090059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forelimb motor performance following cervical spinal cord contusion injury in the rat.
    Schrimsher GW; Reier PJ
    Exp Neurol; 1992 Sep; 117(3):287-98. PubMed ID: 1397165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell and ensemble activity of lumbar intermediate and ventral horn interneurons in the spinal air-stepping cat.
    McMahon C; Kowalski DP; Krupka AJ; Lemay MA
    J Neurophysiol; 2022 Jan; 127(1):99-115. PubMed ID: 34851739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory function following bilateral mid-cervical contusion injury in the adult rat.
    Lane MA; Lee KZ; Salazar K; O'Steen BE; Bloom DC; Fuller DD; Reier PJ
    Exp Neurol; 2012 May; 235(1):197-210. PubMed ID: 21963673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury.
    Bertels H; Vicente-Ortiz G; El Kanbi K; Takeoka A
    Nat Neurosci; 2022 May; 25(5):617-629. PubMed ID: 35524138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a graded cervical hemicontusion spinal cord injury model in adult male rats.
    Dunham KA; Siriphorn A; Chompoopong S; Floyd CL
    J Neurotrauma; 2010 Nov; 27(11):2091-106. PubMed ID: 21087156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased release of D-aspartate in the guinea pig spinal cord after lesions of the red nucleus.
    Benson CG; Chase MC; Potashner SJ
    J Neurochem; 1991 Apr; 56(4):1174-83. PubMed ID: 2002335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible silencing of lumbar spinal interneurons unmasks a task-specific network for securing hindlimb alternation.
    Pocratsky AM; Burke DA; Morehouse JR; Beare JE; Riegler AS; Tsoulfas P; States GJR; Whittemore SR; Magnuson DSK
    Nat Commun; 2017 Dec; 8(1):1963. PubMed ID: 29213073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.