These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37906612)

  • 21. Highly Dense Cu Nanowires for Low-Overpotential CO2 Reduction.
    Raciti D; Livi KJ; Wang C
    Nano Lett; 2015 Oct; 15(10):6829-35. PubMed ID: 26352048
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential Link between Cu Surface and Selective CO
    Tomboc GM; Choi S; Kwon T; Hwang YJ; Lee K
    Adv Mater; 2020 Apr; 32(17):e1908398. PubMed ID: 32134526
    [TBL] [Abstract][Full Text] [Related]  

  • 23.
    Feijóo J; Yang Y; Fonseca Guzman MV; Vargas A; Chen C; Pollock CJ; Yang P
    J Am Chem Soc; 2023 Sep; 145(37):20208-20213. PubMed ID: 37677089
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Evolution of Copper Nanowires during CO
    Yang Y; Shi C; Feijóo J; Jin J; Chen C; Han Y; Yang P
    J Am Chem Soc; 2024 Aug; 146(33):23398-23405. PubMed ID: 39135346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sulfur Changes the Electrochemical CO
    Liang S; Xiao J; Zhang T; Zheng Y; Wang Q; Liu B
    Angew Chem Int Ed Engl; 2023 Oct; 62(44):e202310740. PubMed ID: 37703214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Nanostructured Zn/Cu Electrocatalyst Morphology on the Electrochemical Reduction of CO
    Pinthong P; Klongklaew P; Praserthdam P; Panpranot J
    Nanomaterials (Basel); 2021 Jun; 11(7):. PubMed ID: 34202039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Copper-Indium Binary Catalyst on a Gas Diffusion Electrode for High-Performance CO
    Xiang H; Rasul S; Hou B; Portoles J; Cumpson P; Yu EH
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):601-608. PubMed ID: 31815424
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO
    Chen PC; Chen C; Yang Y; Maulana AL; Jin J; Feijoo J; Yang P
    J Am Chem Soc; 2023 May; 145(18):10116-10125. PubMed ID: 37115017
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Probing of CO
    Jeong Y; Kim Y; Kim YJ; Park JY
    Adv Sci (Weinh); 2024 Jan; 11(4):e2304735. PubMed ID: 38030415
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.
    Lawrence JR; Swerhone GD; Dynes JJ; Korber DR; Hitchcock AP
    J Microsc; 2016 Feb; 261(2):130-47. PubMed ID: 25088794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Revealing the Active Phase of Copper during the Electroreduction of CO
    Velasco-Velez JJ; Mom RV; Sandoval-Diaz LE; Falling LJ; Chuang CH; Gao D; Jones TE; Zhu Q; Arrigo R; Roldan Cuenya B; Knop-Gericke A; Lunkenbein T; Schlögl R
    ACS Energy Lett; 2020 Jun; 5(6):2106-2111. PubMed ID: 32551364
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controllable Cu
    Yuan X; Chen S; Cheng D; Li L; Zhu W; Zhong D; Zhao ZJ; Li J; Wang T; Gong J
    Angew Chem Int Ed Engl; 2021 Jul; 60(28):15344-15347. PubMed ID: 33904226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Spectroscopic Study Revealing Why the CO
    El-Nagar GA; Yang F; Stojkovikj S; Mebs S; Gupta S; Ahmet IY; Dau H; Mayer MT
    ACS Catal; 2022 Dec; 12(24):15576-15589. PubMed ID: 36590316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-situ Multimodal Imaging and Spectroscopy of Mg Electrodeposition at Electrode-Electrolyte Interfaces.
    Wu YA; Yin Z; Farmand M; Yu YS; Shapiro DA; Liao HG; Liang WI; Chu YH; Zheng H
    Sci Rep; 2017 Feb; 7():42527. PubMed ID: 28186175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamics over a Cu-graphite electrode during the gas-phase CO
    Arrigo R; Blume R; Large AI; Velasco-Vélez JJ; Hävecker M; Knop-Gericke A; Held G
    Faraday Discuss; 2022 Aug; 236(0):126-140. PubMed ID: 35543225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ characterization of aluminum-containing mineral-microorganism aqueous suspensions using scanning transmission X-ray microscopy.
    Yoon TH; Johnson SB; Benzerara K; Doyle CS; Tyliszczak T; Shuh DK; Brown GE
    Langmuir; 2004 Nov; 20(24):10361-6. PubMed ID: 15544358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.
    Nilsson HJ; Tyliszczak T; Wilson RE; Werme L; Shuh DK
    Anal Bioanal Chem; 2005 Sep; 383(1):41-7. PubMed ID: 16021423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene Electrode for Studying CO
    Toleukhanova S; Shen TH; Chang C; Swathilakshmi S; Bottinelli Montandon T; Tileli V
    Adv Mater; 2024 Apr; 36(16):e2311133. PubMed ID: 38217533
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.
    Obst M; Schmid G
    Methods Mol Biol; 2014; 1117():757-81. PubMed ID: 24357389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.