These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37906622)

  • 1. Antiferroelectric AgNbO
    Wang Z; Kang J; Wu D; Xue Y; Yi Z
    Macromol Rapid Commun; 2024 Jan; 45(2):e2300485. PubMed ID: 37906622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the Energy Storage Performance of All-Polymer Composites By Blending PVDF and P(VDF-CTFE).
    Yi Z; Wang Z; Li Y; Wu D; Xue Y
    Macromol Rapid Commun; 2023 Feb; 44(4):e2200728. PubMed ID: 36153830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Achieving Ultrahigh Energy Storage Density of La and Ta Codoped AgNbO
    Li B; Yan Z; Zhou X; Qi H; Koval V; Luo X; Luo H; Yan H; Zhang D
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4246-4256. PubMed ID: 36639350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of Energy Storage Performance of PMMA/PVDF Composites by Changing the Crystalline Phase through Heat Treatment.
    Zhang C; Tong X; Liu Z; Zhang Y; Zhang T; Tang C; Liu X; Chi Q
    Polymers (Basel); 2023 May; 15(11):. PubMed ID: 37299285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excellent Energy Storage Performance of Ferroconcrete-like All-Organic Linear/Ferroelectric Polymer Films Utilizing Interface Engineering.
    Cui Y; Feng Y; Zhang T; Zhang C; Chi Q; Zhang Y; Wang X; Chen Q; Lei Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56424-56434. PubMed ID: 33327056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing sandwich-structured composites based on the structure of the filler and the polymer matrix: toward high energy storage properties.
    Cui Y; Wang X; Zhang T; Zhang C; Chi Q
    RSC Adv; 2019 Oct; 9(57):33229-33237. PubMed ID: 35529108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lead-Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance.
    Zhao L; Liu Q; Gao J; Zhang S; Li JF
    Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28628242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergic Enhancement of Energy Storage Density and Efficiency in MnO
    Fan X; Wang J; Yuan H; Chen L; Zhao L; Zhu K
    ACS Appl Mater Interfaces; 2022 Feb; 14(5):7052-7062. PubMed ID: 35080848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K
    Chen C; Wang L; Liu X; Yang W; Lin J; Chen G; Yang X
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving High Energy Density and Low Loss in PVDF/BST Nanodielectrics with Enhanced Structural Homogeneity.
    Xie Y; Jiang W; Fu T; Liu J; Zhang Z; Wang S
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):29038-29047. PubMed ID: 30088763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achieving excellent energy storage performance with thermal stability in lead-free AgNbO
    Chao W; Du J; Li P; Li W; Yang T
    Dalton Trans; 2024 Feb; 53(7):2949-2956. PubMed ID: 38240558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crosslinking modification and hydrogen bonding synergy to achieve high breakdown strength and energy density of PMMA-
    Zheng S; Zhao X; Xie J; Sun S
    Phys Chem Chem Phys; 2023 Dec; 25(47):32482-32492. PubMed ID: 37994561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl Methacrylate-co-glycidyl Methacrylate-Based Dielectric Films with High Breakdown Strength and Discharge Energy Density Tailored by PVDF.
    Zheng S; Xie J; Zhao X; Sun S
    Langmuir; 2023 Mar; 39(10):3710-3719. PubMed ID: 36869872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Energy Storage Performance in La-Doped AgNbO
    Zhao M; Wang J; Yuan H; Zheng Z; Zhao L
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48926-48935. PubMed ID: 36260490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Energy Density and Temperature Stability in PVDF/PMMA
    Liu Y; Liu Z; Gao J; Wu M; Lou X; Hu Y; Li Y; Zhong L
    Front Chem; 2022; 10():902487. PubMed ID: 35665066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Piezoresistive Behavior of Poly(Vinylidene Fluoride)/Carbon Nanotube Composites Using Poly(Methyl Methacrylate).
    Tang X; Pötschke P; Pionteck J; Li Y; Formanek P; Voit B
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43125-43137. PubMed ID: 32897046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectric and energy storage properties of surface-modified BaTi
    Zahid M; Touili S; Amjoud M; Mezzane D; Gouné M; Uršič H; Šadl M; Elamraoui Y; Hoummada K; Kutnjak Z; El Marssi M
    RSC Adv; 2023 Aug; 13(37):26041-26049. PubMed ID: 37664189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films.
    Mao P; Wang J; Zhang L; Sun Q; Liu X; He L; Liu S; Zhang S; Gong H
    Phys Chem Chem Phys; 2020 Jun; 22(23):13143-13153. PubMed ID: 32490855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-Controlled Perovskite 2D Nanosheet Interlayer for the Energy Storage Performance of Nanocomposites.
    Ryu A; Yim H; Yoo S; Park J; Lee DG; Lee JY; Song HC; Baek SH; Nahm S; Choi JW
    Small; 2023 Jul; 19(28):e2300526. PubMed ID: 37010008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Dielectric Properties of PVDF Composites by Employing Surface Modified Strong Polarized BaTiO₃ Particles Derived by Molten Salt Method.
    Fu J; Hou Y; Zheng M; Wei Q; Zhu M; Yan H
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24480-91. PubMed ID: 26488870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.