BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37907125)

  • 1. Dynamic electrical stimulation enhances the recruitment of spinal interneurons by corticospinal input.
    Taccola G; Kissane R; Culaclii S; Apicella R; Liu W; Gad P; Ichiyama RM; Chakrabarty S; Edgerton VR
    Exp Neurol; 2024 Jan; 371():114589. PubMed ID: 37907125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal facilitation of descending motor input.
    Taccola G; Kissane R; Culaclii S; Apicella R; Liu W; Gad P; Ichiyama RM; Chakrabarty S; Edgerton VR
    bioRxiv; 2023 Jul; ():. PubMed ID: 37461548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using EMG to deliver lumbar dynamic electrical stimulation to facilitate cortico-spinal excitability.
    Taccola G; Gad P; Culaclii S; Ichiyama RM; Liu W; Edgerton VR
    Brain Stimul; 2020; 13(1):20-34. PubMed ID: 31585723
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paired motor cortex and cervical epidural electrical stimulation timed to converge in the spinal cord promotes lasting increases in motor responses.
    Mishra AM; Pal A; Gupta D; Carmel JB
    J Physiol; 2017 Nov; 595(22):6953-6968. PubMed ID: 28752624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical activity after stimulation of the corticospinal tract in the spinal cord.
    Costa P; Deletis V
    Clin Neurophysiol; 2016 Feb; 127(2):1726-1733. PubMed ID: 26679418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The muscle evoked potential after epidural electrical stimulation of the spinal cord as a monitor for the corticospinal tract: studies by collision technique and double train stimulation.
    Ando M; Tamaki T; Maio K; Iwahashi H; Iwasaki H; Yamada H; Tani T; Saito T; Kimura J
    J Clin Monit Comput; 2022 Aug; 36(4):1053-1067. PubMed ID: 34181133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlimb neural interactions in corticospinal and spinal reflex circuits during preparation and execution of isometric elbow flexion.
    Sasaki A; Kaneko N; Masugi Y; Milosevic M; Nakazawa K
    J Neurophysiol; 2020 Sep; 124(3):652-667. PubMed ID: 32697605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute neuromodulation restores spinally-induced motor responses after severe spinal cord injury.
    Taccola G; Gad P; Culaclii S; Wang PM; Liu W; Edgerton VR
    Exp Neurol; 2020 May; 327():113246. PubMed ID: 32057795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated cathodal transspinal pulse and direct current stimulation modulate cortical and corticospinal excitability differently in healthy humans.
    Murray LM; Knikou M
    Exp Brain Res; 2019 Jul; 237(7):1841-1852. PubMed ID: 31079235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC; Taylor JL; Nuzzo JL
    Exp Physiol; 2019 Apr; 104(4):546-555. PubMed ID: 30690803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An epidural stimulating interface unveils the intrinsic modulation of electrically motor evoked potentials in behaving rats.
    Taccola G; Culaclii S; Zhong H; Gad P; Liu W; Edgerton VR
    J Neurophysiol; 2021 Nov; 126(5):1635-1641. PubMed ID: 34644129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W; Amer A; Ryan D; Martin JH
    Exp Neurol; 2016 Mar; 277():46-57. PubMed ID: 26708732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticospinal-motor neuronal plasticity promotes exercise-mediated recovery in humans with spinal cord injury.
    Jo HJ; Perez MA
    Brain; 2020 May; 143(5):1368-1382. PubMed ID: 32355959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct patterns of spasticity and corticospinal connectivity following complete spinal cord injury.
    Sangari S; Kirshblum S; Guest JD; Oudega M; Perez MA
    J Physiol; 2021 Oct; 599(19):4441-4454. PubMed ID: 34107068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timing-dependent synergies between motor cortex and posterior spinal stimulation in humans.
    McIntosh JR; Joiner EF; Goldberg JL; Greenwald P; Dionne AC; Murray LM; Thuet E; Modik O; Shelkov E; Lombardi JM; Sardar ZM; Lehman RA; Chan AK; Riew KD; Harel NY; Virk MS; Mandigo C; Carmel JB
    J Physiol; 2024 Jun; 602(12):2961-2983. PubMed ID: 38758005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
    Urbin MA; Ozdemir RA; Tazoe T; Perez MA
    J Neurophysiol; 2017 Oct; 118(4):2171-2180. PubMed ID: 28468994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trans-spinal direct current enhances corticospinal output and stimulation-evoked release of glutamate analog, D-2,3-³H-aspartic acid.
    Ahmed Z; Wieraszko A
    J Appl Physiol (1985); 2012 May; 112(9):1576-92. PubMed ID: 22362399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal recruitment of spinal motor neurons in human stroke survivors.
    Urbin MA; Collinger JL; Wittenberg GF
    J Physiol; 2021 Sep; 599(18):4357-4373. PubMed ID: 34021605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.