BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37907220)

  • 1. Cytosolic DNA accumulation promotes breast cancer immunogenicity via a STING-independent pathway.
    Zhang J; Dai H; Huo L; Burks JK; McGrail DJ; Lin SY
    J Immunother Cancer; 2023 Oct; 11(10):. PubMed ID: 37907220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer.
    Sceneay J; Goreczny GJ; Wilson K; Morrow S; DeCristo MJ; Ubellacker JM; Qin Y; Laszewski T; Stover DG; Barrera V; Hutchinson JN; Freedman RA; Mittendorf EA; McAllister SS
    Cancer Discov; 2019 Sep; 9(9):1208-1227. PubMed ID: 31217296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TREX1 Inactivation Unleashes Cancer Cell STING-Interferon Signaling and Promotes Antitumor Immunity.
    Tani T; Mathsyaraja H; Campisi M; Li ZH; Haratani K; Fahey CG; Ota K; Mahadevan NR; Shi Y; Saito S; Mizuno K; Thai TC; Sasaki N; Homme M; Yusuf CFB; Kashishian A; Panchal J; Wang M; Wolf BJ; Barbie TU; Paweletz CP; Gokhale PC; Liu D; Uppaluri R; Kitajima S; Cain J; Barbie DA
    Cancer Discov; 2024 May; 14(5):752-765. PubMed ID: 38227896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hierarchical tumor-targeting strategy for eliciting potent antitumor immunity against triple negative breast cancer.
    Lin M; Cai Y; Chen G; Zhong H; Li B; Li T; Xiao Z; Shuai X
    Biomaterials; 2023 May; 296():122067. PubMed ID: 36854221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ARID1A suppresses R-loop-mediated STING-type I interferon pathway activation of anti-tumor immunity.
    Maxwell MB; Hom-Tedla MS; Yi J; Li S; Rivera SA; Yu J; Burns MJ; McRae HM; Stevenson BT; Coakley KE; Ho J; Gastelum KB; Bell JC; Jones AC; Eskander RN; Dykhuizen EC; Shadel GS; Kaech SM; Hargreaves DC
    Cell; 2024 May; ():. PubMed ID: 38754421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liposomal ATM siRNA delivery for enhancing triple-negaitive breast cancer immune checkpoint blockade therapy.
    Yu D; Wang H; Liu H; Xu R
    J Biomater Appl; 2023 May; 37(10):1835-1846. PubMed ID: 37016537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanodroplet-enhanced sonodynamic therapy potentiates immune checkpoint blockade for systemic suppression of triple-negative breast cancer.
    Wu W; Xu M; Qiao B; Huang T; Guo H; Zhang N; Zhou L; Li M; Tan Y; Zhang M; Xie X; Shuai X; Zhang C
    Acta Biomater; 2023 Mar; 158():547-559. PubMed ID: 36539109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.
    Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD
    Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TTK inhibition activates STING signal and promotes anti-PD1 immunotherapy in breast cancer.
    Hu X; Li G; Li S; Wang Q; Wang Y; Zhang P; Yang T; Yang B; Yu L; Liu Z
    Biochem Biophys Res Commun; 2024 Jan; 694():149388. PubMed ID: 38150917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neoadjuvant immune checkpoint blockade triggers persistent and systemic T
    Blomberg OS; Kos K; Spagnuolo L; Isaeva OI; Garner H; Wellenstein MD; Bakker N; Duits DEM; Kersten K; Klarenbeek S; Hau CS; Kaldenbach D; Raeven EAM; Vrijland K; Kok M; de Visser KE
    Oncoimmunology; 2023; 12(1):2201147. PubMed ID: 37089449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs.
    Diamond JM; Vanpouille-Box C; Spada S; Rudqvist NP; Chapman JR; Ueberheide BM; Pilones KA; Sarfraz Y; Formenti SC; Demaria S
    Cancer Immunol Res; 2018 Aug; 6(8):910-920. PubMed ID: 29907693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging strategies: PARP inhibitors in combination with immune checkpoint blockade in BRCA1 and BRCA2 mutation-associated and triple-negative breast cancer.
    Gupta T; Vinayak S; Telli M
    Breast Cancer Res Treat; 2023 Jan; 197(1):51-56. PubMed ID: 36318381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Panobinostat Induced Spatial In Situ Biomarkers Predictive of Anti-PD-1 Efficacy in Mouse Mammary Carcinoma.
    Tatarova Z; Blumberg DC; Bensen A; Mills GB; Jonas O
    Cells; 2023 Jan; 12(2):. PubMed ID: 36672243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of NOTCH1, NOTCH4, HLA-DMA and HLA-DRA is synergistically associated with T cell exclusion, immune checkpoint blockade efficacy and recurrence risk in ER-negative breast cancer.
    Liu D; Hofman P
    Cell Oncol (Dordr); 2022 Jun; 45(3):463-477. PubMed ID: 35543859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer.
    Pérez-Núñez I; Rozalén C; Palomeque JÁ; Sangrador I; Dalmau M; Comerma L; Hernández-Prat A; Casadevall D; Menendez S; Liu DD; Shen M; Berenguer J; Ruiz IR; Peña R; Montañés JC; Albà MM; Bonnin S; Ponomarenko J; Gomis RR; Cejalvo JM; Servitja S; Marzese DM; Morey L; Voorwerk L; Arribas J; Bermejo B; Kok M; Pusztai L; Kang Y; Albanell J; Celià-Terrassa T
    Nat Cancer; 2022 Mar; 3(3):355-370. PubMed ID: 35301507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of STING-Dependent Innate Immune Signaling By S-Phase-Specific DNA Damage in Breast Cancer.
    Parkes EE; Walker SM; Taggart LE; McCabe N; Knight LA; Wilkinson R; McCloskey KD; Buckley NE; Savage KI; Salto-Tellez M; McQuaid S; Harte MT; Mullan PB; Harkin DP; Kennedy RD
    J Natl Cancer Inst; 2017 Jan; 109(1):. PubMed ID: 27707838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homologous recombination deficiency and host anti-tumor immunity in triple-negative breast cancer.
    Telli ML; Stover DG; Loi S; Aparicio S; Carey LA; Domchek SM; Newman L; Sledge GW; Winer EP
    Breast Cancer Res Treat; 2018 Aug; 171(1):21-31. PubMed ID: 29736741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Model to Predict the Triple Negative Breast Cancer Immune Subtype.
    Chen Z; Wang M; De Wilde RL; Feng R; Su M; Torres-de la Roche LA; Shi W
    Front Immunol; 2021; 12():749459. PubMed ID: 34603338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.