These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37908190)

  • 1. Probe the nanoparticle-nucleus interaction
    Zhang L; Liu N; Wang X
    Phys Chem Chem Phys; 2023 Nov; 25(44):30319-30329. PubMed ID: 37908190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiochemical Effects of Nanoparticles on Cell Nuclear Complex Pore Transport: A Coarse-Grained Computational Model.
    Zhang L; Becton MD; Liu N; Averett RD; Pidaparti RM; Wang X
    J Chem Theory Comput; 2019 Nov; 15(11):6382-6392. PubMed ID: 31525923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chitosan Nanoparticles for Nuclear Targeting: The Effect of Nanoparticle Size and Nuclear Localization Sequence Density.
    Tammam SN; Azzazy HM; Breitinger HG; Lamprecht A
    Mol Pharm; 2015 Dec; 12(12):4277-89. PubMed ID: 26465978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk.
    Li Y; Kröger M; Liu WK
    Nanoscale; 2015 Oct; 7(40):16631-46. PubMed ID: 26204104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Delivery of Nanoparticle-Based Drug Delivery Systems by Nuclear Localization Signals.
    Nie Y; Fu G; Leng Y
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system.
    Tang H; Ye H; Zhang H; Zheng Y
    Nanotechnology; 2018 Oct; 29(40):405102. PubMed ID: 30020084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncovering the Importance of Ligand Mobility on Cellular Uptake of Nanoparticles: Insights from Experimental, Computational, and Theoretical Investigations.
    Chen YQ; Xue MD; Li JL; Huo D; Ding HM; Ma Y
    ACS Nano; 2024 Feb; 18(8):6463-6476. PubMed ID: 38346263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of nanoparticle transport through the female reproductive tract for the treatment of infectious diseases.
    Sims LB; Miller HA; Halwes ME; Steinbach-Rankins JM; Frieboes HB
    Eur J Pharm Biopharm; 2019 May; 138():37-47. PubMed ID: 30195726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay of Nanoparticle Rigidity and Its Translocation Ability through Cell Membrane.
    Zhang L; Chen H; Xie J; Becton M; Wang X
    J Phys Chem B; 2019 Oct; 123(42):8923-8930. PubMed ID: 31566375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of biophysical interactions of nanoparticles with a model membrane in predicting cellular uptake: study with TAT peptide-conjugated nanoparticles.
    Peetla C; Rao KS; Labhasetwar V
    Mol Pharm; 2009; 6(5):1311-20. PubMed ID: 19243206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Does the Study MD of pH-Dependent Exposure of Nanoparticles Affect Cellular Uptake of Anticancer Drugs?
    Sengottiyan S; Mikolajczyk A; Puzyn T
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological and mechanical determinants of cellular uptake of deformable nanoparticles.
    Chen L; Li X; Zhang Y; Chen T; Xiao S; Liang H
    Nanoscale; 2018 Jul; 10(25):11969-11979. PubMed ID: 29904774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantification and biological evaluation of Zn
    Al-Madani H; Yang Y; Refat M; He Q; Peng H; Wu A; Yang F
    J Mater Chem B; 2024 Feb; 12(6):1636-1651. PubMed ID: 38270595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance.
    Gomes CP; Varela-Moreira A; Leiro V; Lopes CDF; Moreno PMD; Gomez-Lazaro M; Pêgo AP
    Acta Biomater; 2016 Dec; 46():129-140. PubMed ID: 27686038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellular interactions of therapeutically delivered nanoparticles.
    Kumari A; Yadav SK
    Expert Opin Drug Deliv; 2011 Feb; 8(2):141-51. PubMed ID: 21219249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Factors Influencing Chitosan-Based Nanoparticles-Protein Corona Interaction and Drug Delivery Applications.
    Moraru C; Mincea M; Menghiu G; Ostafe V
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33081296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.