These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 37908406)

  • 21. Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey.
    Orr J; Dutta A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Research on obstacle avoidance optimization and path planning of autonomous vehicles based on attention mechanism combined with multimodal information decision-making thoughts of robots.
    Wu X; Wang G; Shen N
    Front Neurorobot; 2023; 17():1269447. PubMed ID: 37811356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Training visual control in wheelchair basketball shooting.
    Oudejans RR; Heubers S; Ruitenbeek JR; Janssen TW
    Res Q Exerc Sport; 2012 Sep; 83(3):464-9. PubMed ID: 22978196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Koopman Operator-Based Knowledge-Guided Reinforcement Learning for Safe Human-Robot Interaction.
    Sinha A; Wang Y
    Front Robot AI; 2022; 9():779194. PubMed ID: 35783024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application Effect of Motion Capture Technology in Basketball Resistance Training and Shooting Hit Rate in Immersive Virtual Reality Environment.
    Wei W; Qin Z; Yan B; Wang Q
    Comput Intell Neurosci; 2022; 2022():4584980. PubMed ID: 35785072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Bio-inspired Motivational Decision Making System for Social Robots Based on the Perception of the User.
    Maroto-Gómez M; Castro-González Á; Castillo JC; Malfaz M; Salichs MA
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115836
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Autonomous Navigation by Mobile Robot with Sensor Fusion Based on Deep Reinforcement Learning.
    Ou Y; Cai Y; Sun Y; Qin T
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Learner-adapted practice promotes skill transfer in unskilled adults learning the basketball set shot.
    Porter C; Greenwood D; Panchuk D; Pepping GJ
    Eur J Sport Sci; 2020 Feb; 20(1):61-71. PubMed ID: 31079552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Multi-Task Fusion Strategy-Based Decision-Making and Planning Method for Autonomous Driving Vehicles.
    Liu W; Xiang Z; Fang H; Huo K; Wang Z
    Sensors (Basel); 2023 Aug; 23(16):. PubMed ID: 37631557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Experimental Safety Response Mechanism for an Autonomous Moving Robot in a Smart Manufacturing Environment Using Q-Learning Algorithm and Speech Recognition.
    Kiangala KS; Wang Z
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning efficient haptic shape exploration with a rigid tactile sensor array.
    Fleer S; Moringen A; Klatzky RL; Ritter H
    PLoS One; 2020; 15(1):e0226880. PubMed ID: 31896135
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning to Cooperate via an Attention-Based Communication Neural Network in Decentralized Multi-Robot Exploration.
    Geng M; Xu K; Zhou X; Ding B; Wang H; Zhang L
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An End-to-End Deep Reinforcement Learning-Based Intelligent Agent Capable of Autonomous Exploration in Unknown Environments.
    Ramezani Dooraki A; Lee DJ
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30360397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Path-Planning Method Based on Improved Soft Actor-Critic Algorithm for Mobile Robots.
    Zhao T; Wang M; Zhao Q; Zheng X; Gao H
    Biomimetics (Basel); 2023 Oct; 8(6):. PubMed ID: 37887612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical Deep Reinforcement Learning for Continuous Action Control.
    Yang Z; Merrick K; Jin L; Abbass HA
    IEEE Trans Neural Netw Learn Syst; 2018 Nov; 29(11):5174-5184. PubMed ID: 29994078
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Survey on Reinforcement Learning Methods in Bionic Underwater Robots.
    Tong R; Feng Y; Wang J; Wu Z; Tan M; Yu J
    Biomimetics (Basel); 2023 Apr; 8(2):. PubMed ID: 37092420
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep reinforcement learning-aided autonomous navigation with landmark generators.
    Wang X; Sun Y; Xie Y; Bin J; Xiao J
    Front Neurorobot; 2023; 17():1200214. PubMed ID: 37674856
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.