These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37908441)

  • 1. Novel near-infrared spectroscopy-intravascular ultrasound-based deep-learning methodology for accurate coronary computed tomography plaque quantification and characterization.
    Ramasamy A; Sokooti H; Zhang X; Tzorovili E; Bajaj R; Kitslaar P; Broersen A; Amersey R; Jain A; Ozkor M; Reiber JHC; Dijkstra J; Serruys PW; Moon JC; Mathur A; Baumbach A; Torii R; Pugliese F; Bourantas CV
    Eur Heart J Open; 2023 Sep; 3(5):oead090. PubMed ID: 37908441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implications of computed tomography reconstruction algorithms on coronary atheroma quantification: Comparison with intravascular ultrasound.
    Ramasamy A; Hamid A Khan A; Cooper J; Simon J; Maurovich-Horvat P; Bajaj R; Kitslaar P; Amersey R; Jain A; Deaner A; Reiber JH; Moon JC; Dijkstra J; Serruys PW; Mathur A; Baumbach A; Torii R; Pugliese F; Bourantas CV
    J Cardiovasc Comput Tomogr; 2023; 17(1):43-51. PubMed ID: 36270952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of Low-Attenuation Plaque Burden from Coronary CT Angiography: A Head-to-Head Comparison with Near-Infrared Spectroscopy Intravascular US.
    Tanisawa H; Matsumoto H; Cadet S; Higuchi S; Ohya H; Isodono K; Irie D; Kaneko K; Sumida A; Hirano T; Otaki Y; Kitamura R; Slomka PJ; Dey D; Shinke T
    Radiol Cardiothorac Imaging; 2023 Oct; 5(5):e230090. PubMed ID: 37908555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning methodology for the automated detection of end-diastolic frames in intravascular ultrasound images.
    Bajaj R; Huang X; Kilic Y; Jain A; Ramasamy A; Torii R; Moon J; Koh T; Crake T; Parker MK; Tufaro V; Serruys PW; Pugliese F; Mathur A; Baumbach A; Dijkstra J; Zhang Q; Bourantas CV
    Int J Cardiovasc Imaging; 2021 Jun; 37(6):1825-1837. PubMed ID: 33590430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rationale and design of the INVICTUS Registry: (Multicenter Registry of Invasive and Non-Invasive imaging modalities to compare Coronary Computed Tomography Angiography, Intravascular Ultrasound and Optical Coherence Tomography for the determination of Severity, Volume and Type of coronary atherosclerosiS).
    Nakanishi R; Okubo R; Sobue Y; Kaneko U; Sato H; Fujimoto S; Nozaki Y; Kajiya T; Miyoshi T; Ichikawa K; Abe M; Kitagawa T; Ikenaga H; Osawa K; Saji M; Iguchi N; Nakazawa G; Takahashi K; Ijich T; Mikamo H; Kurata A; Moroi M; Iijima R; Malkasian S; Crabtree T; Chamie D; Alexandra LJ; Min JK; Earls JP; Matsuo H
    J Cardiovasc Comput Tomogr; 2023; 17(6):401-406. PubMed ID: 37679247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: a multimodality intravascular imaging study.
    Zanchin C; Ueki Y; Losdat S; Fahrni G; Daemen J; Ondracek AS; Häner JD; Stortecky S; Otsuka T; Siontis GCM; Rigamonti F; Radu M; Spirk D; Kaiser C; Engstrom T; Lang I; Koskinas KC; Räber L
    Eur Heart J Cardiovasc Imaging; 2021 Jun; 22(7):824-834. PubMed ID: 31990323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endothelial shear stress computed from coronary computed tomography angiography: A direct comparison to intravascular ultrasound.
    Hakim D; Coskun AU; Maynard C; Pu Z; Rupert D; Cefalo N; Cormier M; Ahmed M; Earls J; Jennings R; Croce K; Mushtaq S; Andreini D; Conte E; Molony D; Samady H; Min JK; Stone PH
    J Cardiovasc Comput Tomogr; 2023; 17(3):201-210. PubMed ID: 37076326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for atherosclerotic tissue component classification in combined near-infrared spectroscopy intravascular ultrasound imaging: Validation against histology.
    Bajaj R; Eggermont J; Grainger SJ; Räber L; Parasa R; Khan AHA; Costa C; Erdogan E; Hendricks MJ; Chandrasekharan KH; Andiapen M; Serruys PW; Torii R; Mathur A; Baumbach A; Dijkstra J; Bourantas CV
    Atherosclerosis; 2022 Mar; 345():15-25. PubMed ID: 35196627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimodality imaging to identify lipid-rich coronary plaques and predict periprocedural myocardial injury: Association between near-infrared spectroscopy and coronary computed tomography angiography.
    Ota H; Matsuo H; Imai S; Nakashima Y; Kawase Y; Okubo M; Takahashi H; Kawai H; Sobue Y; Kawasaki M; Kondo T; Muramatsu T; Izawa H
    Front Cardiovasc Med; 2023; 10():1127121. PubMed ID: 37077746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative Image Reconstruction Improves the Accuracy of Automated Plaque Burden Assessment in Coronary CT Angiography: A Comparison With Intravascular Ultrasound.
    Puchner SB; Ferencik M; Maehara A; Stolzmann P; Ma S; Do S; Kauczor HU; Mintz GS; Hoffmann U; Schlett CL
    AJR Am J Roentgenol; 2017 Apr; 208(4):777-784. PubMed ID: 28177655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plaque quantification by coronary computed tomography angiography using intravascular ultrasound as a reference standard: a comparison between standard and last generation computed tomography scanners.
    Conte E; Mushtaq S; Pontone G; Li Piani L; Ravagnani P; Galli S; Collet C; Sonck J; Di Odoardo L; Guglielmo M; Baggiano A; Trabattoni D; Annoni A; Mancini ME; Formenti A; Muscogiuri G; Magatelli M; Nicoli F; Poggi C; Fiorentini C; Bartorelli AL; Pepi M; Montorsi P; Andreini D
    Eur Heart J Cardiovasc Imaging; 2020 Feb; 21(2):191-201. PubMed ID: 31093656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationship between coronary high-intensity plaques on T1-weighted imaging by cardiovascular magnetic resonance and vulnerable plaque features by near-infrared spectroscopy and intravascular ultrasound: a prospective cohort study.
    Fukase T; Dohi T; Fujimoto S; Nishio R; Nozaki YO; Kudo A; Takeuchi M; Takahashi N; Chikata Y; Endo H; Kawaguchi YO; Doi S; Nishiyama H; Hiki M; Okai I; Iwata H; Yokoyama T; Okazaki S; Miyauchi K; Daida H; Li D; Xie Y; Minamino T
    J Cardiovasc Magn Reson; 2023 Jan; 25(1):4. PubMed ID: 36710360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for non-invasive plaque morphology analysis by coronary computed tomography angiography.
    Fujimoto S; Kondo T; Kodama T; Fujisawa Y; Groarke J; Kumamaru KK; Takamura K; Matsunaga E; Miyauchi K; Daida H; Rybicki FJ
    Int J Cardiovasc Imaging; 2014 Oct; 30(7):1373-82. PubMed ID: 24894361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined IVUS and NIRS detection of fibroatheromas: histopathological validation in human coronary arteries.
    Kang SJ; Mintz GS; Pu J; Sum ST; Madden SP; Burke AP; Xu K; Goldstein JA; Stone GW; Muller JE; Virmani R; Maehara A
    JACC Cardiovasc Imaging; 2015 Feb; 8(2):184-94. PubMed ID: 25577445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of coronary artery lesion length by NIRS-IVUS versus angiography alone.
    Hanson ID; Goldstein JA; Dixon SR; Stone GW
    Coron Artery Dis; 2015 Sep; 26(6):484-9. PubMed ID: 26010532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. End-diastolic segmentation of intravascular ultrasound images enables more reproducible volumetric analysis of atheroma burden.
    Erdogan E; Huang X; Cooper J; Jain A; Ramasamy A; Bajaj R; Torii R; Moon J; Deaner A; Costa C; Garcia-Garcia HM; Tufaro V; Serruys PW; Pugliese F; Mathur A; Dijkstra J; Baumbach A; Zhang Q; Bourantas CV
    Catheter Cardiovasc Interv; 2022 Feb; 99(3):706-713. PubMed ID: 34402586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological assessment of chronic total occlusions by combined coronary computed tomographic angiography and intravascular ultrasound imaging.
    Yamamoto MH; Maehara A; Poon M; Guo J; Yamashita K; Yakushiji T; Saito S; Koyama K; Mintz GS; Ochiai M
    Eur Heart J Cardiovasc Imaging; 2017 Mar; 18(3):315-322. PubMed ID: 27099278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invasive characterization of atherosclerotic plaque in patients with peripheral arterial disease using near-infrared spectroscopy intravascular ultrasound.
    Abbas AE; Zacharias SK; Goldstein JA; Hanson ID; Safian RD
    Catheter Cardiovasc Interv; 2017 Sep; 90(3):461-470. PubMed ID: 28303659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-Infrared Spectroscopy Enhances Intravascular Ultrasound Assessment of Vulnerable Coronary Plaque: A Combined Pathological and In Vivo Study.
    Puri R; Madder RD; Madden SP; Sum ST; Wolski K; Muller JE; Andrews J; King KL; Kataoka Y; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; Virmani R; Maehara A; Mintz GS; Nicholls SJ
    Arterioscler Thromb Vasc Biol; 2015 Nov; 35(11):2423-31. PubMed ID: 26338299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diagnostic value of coronary CT angiography in comparison with invasive coronary angiography and intravascular ultrasound in patients with intermediate coronary artery stenosis: results from the prospective multicentre FIGURE-OUT (Functional Imaging criteria for GUiding REview of invasive coronary angiOgraphy, intravascular Ultrasound, and coronary computed Tomographic angiography) study.
    Doh JH; Koo BK; Nam CW; Kim JH; Min JK; Nakazato R; Silalahi T; Prawira H; Choi H; Lee SY; Namgung J; Kwon SU; Kwak JJ; Lee WR
    Eur Heart J Cardiovasc Imaging; 2014 Aug; 15(8):870-7. PubMed ID: 24513881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.