These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37909182)

  • 1. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry.
    Chen J; Zhong J; Lei H; Ai Y
    Lab Chip; 2023 Nov; 23(23):5029-5038. PubMed ID: 37909182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and Accurate Antimicrobial Susceptibility Testing Using Label-Free Electrical Impedance-Based Microfluidic Platform.
    Chen J; Zhong J; Chang Y; Zhou Y; Koo SH; Tan TY; Lei H; Ai Y
    Small; 2024 Feb; 20(6):e2303352. PubMed ID: 37794624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the Use of Impedance Flow Cytometry for Classifying the Viability State of
    Bertelsen CV; Franco JC; Skands GE; Dimaki M; Svendsen WE
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33172055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep Learning Assisted Microfluidic Impedance Flow Cytometry for Label-free Foodborne Bacteria Analysis and Classification
    Zhang S; Han Z; Feng Z; Sun M; Duan X
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7087-7090. PubMed ID: 34892734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria Detection and Differentiation Using Impedance Flow Cytometry.
    Clausen CH; Dimaki M; Bertelsen CV; Skands GE; Rodriguez-Trujillo R; Thomsen JD; Svendsen WE
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30336557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic Impedance-Deformability Cytometry for Label-Free Single Neutrophil Mechanophenotyping.
    Petchakup C; Yang H; Gong L; He L; Tay HM; Dalan R; Chung AJ; Li KHH; Hou HW
    Small; 2022 May; 18(18):e2104822. PubMed ID: 35253966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flow cytometry-based submicron-sized bacterial detection system using a movable virtual wall.
    Choi H; Jeon CS; Hwang I; Ko J; Lee S; Choo J; Boo JH; Kim HC; Chung TD
    Lab Chip; 2014 Jul; 14(13):2327-33. PubMed ID: 24828279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic impedance flow cytometry enabling high-throughput single-cell electrical property characterization.
    Chen J; Xue C; Zhao Y; Chen D; Wu MH; Wang J
    Int J Mol Sci; 2015 Apr; 16(5):9804-30. PubMed ID: 25938973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An adaptive three-dimensional hydrodynamic focusing microfluidic impedance flow cytometer.
    Zhou Y; Wang J; Liu T; Wu M; Lan Y; Jia C; Zhao J
    Analyst; 2023 Jul; 148(14):3239-3246. PubMed ID: 37341575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Concepts, electrode configuration, characterization, and data analytics of electric and electrochemical microfluidic platforms: a review.
    Nguyen TH; Nguyen HA; Tran Thi YV; Hoang Tran D; Cao H; Chu Duc T; Bui TT; Do Quang L
    Analyst; 2023 May; 148(9):1912-1929. PubMed ID: 36928639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic impedance cytometry for single-cell sensing: Review on electrode configurations.
    Zhu S; Zhang X; Zhou Z; Han Y; Xiang N; Ni Z
    Talanta; 2021 Oct; 233():122571. PubMed ID: 34215067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing signals of microfluidic impedance cytometry through optimization of microelectrode array.
    Zhou C; Shen H; Feng H; Yan Z; Ji B; Yuan X; Zhang R; Chang H
    Electrophoresis; 2022 Nov; 43(21-22):2156-2164. PubMed ID: 35305273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering impedance cytometry signals with neural networks.
    Caselli F; Reale R; De Ninno A; Spencer D; Morgan H; Bisegna P
    Lab Chip; 2022 May; 22(9):1714-1722. PubMed ID: 35353108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaerosol monitoring by integrating DC impedance microfluidic cytometer with wet-cyclone air sampler.
    Lee CH; Seok H; Jang W; Kim JT; Park G; Kim HU; Rho J; Kim T; Chung TD
    Biosens Bioelectron; 2021 Nov; 192():113499. PubMed ID: 34311208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.