These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37909473)

  • 21. The discovery of novel antivirals for the treatment of mpox: is drug repurposing the answer?
    Ezat AA; Abduljalil JM; Elghareib AM; Samir A; Elfiky AA
    Expert Opin Drug Discov; 2023 May; 18(5):551-561. PubMed ID: 37032577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insights to the binding interactions of APNS containing HIV-protease inhibitors against SARS-CoV-2 M
    Purohit P; Dash JJ; Muya JT; Meher BR
    J Biomol Struct Dyn; 2023 Jun; 41(9):3900-3913. PubMed ID: 35388744
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of core therapeutic targets for Monkeypox virus and repurposing potential of drugs against them: An in silico approach.
    Sahu A; Gaur M; Mahanandia NC; Subudhi E; Swain RP; Subudhi BB
    Comput Biol Med; 2023 Jul; 161():106971. PubMed ID: 37211001
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Targeting Monkeypox Virus Methyltransferase: Virtual Screening of Natural Compounds from Middle-Eastern Medicinal Plants.
    Hashim HO; Al-Shuhaib JMB; Mohammed MK; Al-Shuhaib MBS
    Mol Biotechnol; 2024 Aug; ():. PubMed ID: 39097539
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of Rab5B inhibitors through integrative in silico techniques.
    Kashyap D; Koirala S; Saini V; Bagde PH; Samanta S; Kar P; Jha HC
    Mol Divers; 2023 Jul; ():. PubMed ID: 37505376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Repurposing Anti-Dengue Compounds against Monkeypox Virus Targeting Core Cysteine Protease.
    Imran M; Abida ; Alotaibi NM; Thabet HK; Alruwaili JA; Eltaib L; Alshehri A; Alsaiari AA; Kamal M; Alshammari AMA
    Biomedicines; 2023 Jul; 11(7):. PubMed ID: 37509664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differences in pathogenicity among the mpox virus clades: impact on drug discovery and vaccine development.
    Andrei G; Snoeck R
    Trends Pharmacol Sci; 2023 Oct; 44(10):719-739. PubMed ID: 37673695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In silico identification of potential phytochemical inhibitors for mpox virus: molecular docking, MD simulation, and ADMET studies.
    Ghate SD; Pinto L; Alva S; Srinivasa MG; Vangala RK; Naik P; Revanasiddappa BC; Rao RSP
    Mol Divers; 2024 Mar; ():. PubMed ID: 38519803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting homologous recombination (HR) repair mechanism for cancer treatment: discovery of new potential UCHL-3 inhibitors
    Alakhdar AA; Saleh AH; Arafa RK
    J Biomol Struct Dyn; 2022 Jan; 40(1):276-289. PubMed ID: 32851933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Contriving multi-epitope vaccine ensemble for monkeypox disease using an immunoinformatics approach.
    Aziz S; Almajhdi FN; Waqas M; Ullah I; Salim MA; Khan NA; Ali A
    Front Immunol; 2022; 13():1004804. PubMed ID: 36311762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening.
    Esther Rubavathy SM; Palanisamy K; Priyankha S; Thilagavathi R; Prakash M; Selvam C
    J Biomol Struct Dyn; 2023 Nov; 41(19):9492-9502. PubMed ID: 36369945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bioprospecting of Meliaceae family phytomolecules for the treatment of monkeypox virus infection: a QSAR modeling and MD simulation approach.
    Rabaan AA; Halwani MA; Alshehri AA; Al-Subaie MF; Almansour ZH; AlShehail BM; Alotaibi N; Khamis F; Al Kaabi NA; Alsomali G; Alqahtani AS; Alissa M
    J Biomol Struct Dyn; 2024 Jan; ():1-23. PubMed ID: 38174404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
    Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC
    Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Joshi T; Joshi T; Sharma P; Pundir H; Chandra S
    J Biomol Struct Dyn; 2021 Aug; 39(13):4816-4834. PubMed ID: 32568603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combined molecular dynamics and continuum solvent approaches (MM-PBSA/GBSA) to predict noscapinoid binding to γ-tubulin dimer.
    Suri C; Naik PK
    SAR QSAR Environ Res; 2015 Jun; 26(6):507-19. PubMed ID: 26274780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of novel natural MurD ligase inhibitors as potential antimicrobial agents targeting
    Tiwari P; Sharma P; Kumar M; Kapil A; Abdul Samath E; Kaur P
    J Biomol Struct Dyn; 2022; 40(24):14051-14066. PubMed ID: 34766874
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Delineating multi-epitopes vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach.
    Alsaiari AA; Hakami MA; Alotaibi BS; Alkhalil SS; Alkhorayef N; Khan K; Jalal K
    J Biomol Struct Dyn; 2023 Aug; ():1-22. PubMed ID: 37599459
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase
    Bahaman AH; Wahab RA; Abdul Hamid AA; Abd Halim KB; Kaya Y
    J Biomol Struct Dyn; 2021 Apr; 39(7):2628-2641. PubMed ID: 32248752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation.
    Kumari M; Singh R; Subbarao N
    J Biomol Struct Dyn; 2022; 40(24):13497-13526. PubMed ID: 34662260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis, Molecular Docking, Molecular Dynamics Studies, and Biological Evaluation of 4H-Chromone-1,2,3,4-tetrahydropyrimidine-5-carboxylate Derivatives as Potential Antileukemic Agents.
    Dolatkhah Z; Javanshir S; Sadr AS; Hosseini J; Sardari S
    J Chem Inf Model; 2017 Jun; 57(6):1246-1257. PubMed ID: 28524659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.