BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 37910601)

  • 1. Intrathecal delivery of nanoparticle PARP inhibitor to the cerebrospinal fluid for the treatment of metastatic medulloblastoma.
    Khang M; Lee JH; Lee T; Suh HW; Lee S; Cavaliere A; Rushing A; Geraldo LH; Belitzky E; Rossano S; de Feyter HM; Shin K; Huttner A; Roussel MF; Thomas JL; Carson RE; Marquez-Nostra B; Bindra RS; Saltzman WM
    Sci Transl Med; 2023 Nov; 15(720):eadi1617. PubMed ID: 37910601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrathecal chemotherapy with antineoplastic agents in children.
    Ruggiero A; Conter V; Milani M; Biagi E; Lazzareschi I; Sparano P; Riccardi R
    Paediatr Drugs; 2001; 3(4):237-46. PubMed ID: 11354696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrathecal chemotherapy for leptomeningeal dissemination of medulloblastoma.
    Edwards MS; Levin VA; Seager ML; Wilson CB
    Childs Brain; 1981; 8(6):444-51. PubMed ID: 6796342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrathecal chemotherapy delivered by a lumbar-thecal catheter in metastatic medulloblastoma: a case illustration.
    Clayton J; Vloeberghs M; Jaspan T; Walker D; MacArthur D; Grundy R
    Acta Neurochir (Wien); 2008 Jul; 150(7):709-12. PubMed ID: 18401539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central nervous system penetration and enhancement of temozolomide activity in childhood medulloblastoma models by poly(ADP-ribose) polymerase inhibitor AG-014699.
    Daniel RA; Rozanska AL; Mulligan EA; Drew Y; Thomas HD; Castelbuono DJ; Hostomsky Z; Plummer ER; Tweddle DA; Boddy AV; Clifford SC; Curtin NJ
    Br J Cancer; 2010 Nov; 103(10):1588-96. PubMed ID: 20978505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(2-oxazoline) nanoparticle delivery enhances the therapeutic potential of vismodegib for medulloblastoma by improving CNS pharmacokinetics and reducing systemic toxicity.
    Hwang D; Dismuke T; Tikunov A; Rosen EP; Kagel JR; Ramsey JD; Lim C; Zamboni W; Kabanov AV; Gershon TR; Sokolsky-Papkov PhD M
    Nanomedicine; 2021 Feb; 32():102345. PubMed ID: 33259959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors.
    Hopkins TA; Shi Y; Rodriguez LE; Solomon LR; Donawho CK; DiGiammarino EL; Panchal SC; Wilsbacher JL; Gao W; Olson AM; Stolarik DF; Osterling DJ; Johnson EF; Maag D
    Mol Cancer Res; 2015 Nov; 13(11):1465-77. PubMed ID: 26217019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plectin-targeted liposomes enhance the therapeutic efficacy of a PARP inhibitor in the treatment of ovarian cancer.
    Dasa SSK; Diakova G; Suzuki R; Mills AM; Gutknecht MF; Klibanov AL; Slack-Davis JK; Kelly KA
    Theranostics; 2018; 8(10):2782-2798. PubMed ID: 29774075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrathecal mafosfamide therapy for pediatric brain tumors with meningeal dissemination.
    Slavc I; Schuller E; Czech T; Hainfellner JA; Seidl R; Dieckmann K
    J Neurooncol; 1998; 38(2-3):213-8. PubMed ID: 9696374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locoregional delivery of CAR T cells to the cerebrospinal fluid for treatment of metastatic medulloblastoma and ependymoma.
    Donovan LK; Delaidelli A; Joseph SK; Bielamowicz K; Fousek K; Holgado BL; Manno A; Srikanthan D; Gad AZ; Van Ommeren R; Przelicki D; Richman C; Ramaswamy V; Daniels C; Pallota JG; Douglas T; Joynt ACM; Haapasalo J; Nor C; Vladoiu MC; Kuzan-Fischer CM; Garzia L; Mack SC; Varadharajan S; Baker ML; Hendrikse L; Ly M; Kharas K; Balin P; Wu X; Qin L; Huang N; Stucklin AG; Morrissy AS; Cavalli FMG; Luu B; Suarez R; De Antonellis P; Michealraj A; Rastan A; Hegde M; Komosa M; Sirbu O; Kumar SA; Abdullaev Z; Faria CC; Yip S; Hukin J; Tabori U; Hawkins C; Aldape K; Daugaard M; Maris JM; Sorensen PH; Ahmed N; Taylor MD
    Nat Med; 2020 May; 26(5):720-731. PubMed ID: 32341580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted Delivery of Talazoparib Across the Blood-Brain Barrier Limits the Sensitizing Effects of PARP Inhibition on Temozolomide Therapy in Glioblastoma.
    Kizilbash SH; Gupta SK; Chang K; Kawashima R; Parrish KE; Carlson BL; Bakken KK; Mladek AC; Schroeder MA; Decker PA; Kitange GJ; Shen Y; Feng Y; Protter AA; Elmquist WF; Sarkaria JN
    Mol Cancer Ther; 2017 Dec; 16(12):2735-2746. PubMed ID: 28947502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic activity of PARP inhibition by talazoparib (BMN 673) with temozolomide in pediatric cancer models in the pediatric preclinical testing program.
    Smith MA; Reynolds CP; Kang MH; Kolb EA; Gorlick R; Carol H; Lock RB; Keir ST; Maris JM; Billups CA; Lyalin D; Kurmasheva RT; Houghton PJ
    Clin Cancer Res; 2015 Feb; 21(4):819-32. PubMed ID: 25500058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overexpression of ABCC1 and ABCG2 confers resistance to talazoparib, a poly (ADP-Ribose) polymerase inhibitor.
    Teng QX; Lei ZN; Wang JQ; Yang Y; Wu ZX; Acharekar ND; Zhang W; Yoganathan S; Pan Y; Wurpel J; Chen ZS; Fang S
    Drug Resist Updat; 2024 Mar; 73():101028. PubMed ID: 38340425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nano-liposome formulation of the PARP inhibitor Talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice.
    Zhang D; Baldwin P; Leal AS; Carapellucci S; Sridhar S; Liby KT
    Theranostics; 2019; 9(21):6224-6238. PubMed ID: 31534547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of Asparaginase
    Sanghez V; Chen M; Li S; Chou TF; Iacovino M; Lin HJ; Lasky JL; Panosyan EH
    Anticancer Res; 2018 May; 38(5):2627-2634. PubMed ID: 29715082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineered biomimetic nanoparticle for dual targeting of the cancer stem-like cell population in sonic hedgehog medulloblastoma.
    Kim J; Dey A; Malhotra A; Liu J; Ahn SI; Sei YJ; Kenney AM; MacDonald TJ; Kim Y
    Proc Natl Acad Sci U S A; 2020 Sep; 117(39):24205-24212. PubMed ID: 32934143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does PARP Inhibition Sensitize Chondrosarcoma Cell Lines to Chemotherapy or Radiotherapy? Results From a Three-dimensional Spheroid Cell Model.
    Palubeckaitė I; Venneker S; van den Akker BEWM; Briaire-de Bruijn IH; Boveé JVMG
    Clin Orthop Relat Res; 2023 Mar; 481(3):608-619. PubMed ID: 36729612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Positron-Emission Tomographic Imaging of a Fluorine 18-Radiolabeled Poly(ADP-Ribose) Polymerase 1 Inhibitor Monitors the Therapeutic Efficacy of Talazoparib in SCLC Patient-Derived Xenografts.
    Laird J; Lok BH; Carney B; Kossatz S; de Stanchina E; Reiner T; Poirier JT; Rudin CM
    J Thorac Oncol; 2019 Oct; 14(10):1743-1752. PubMed ID: 31195178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic cytotoxicity of the poly (ADP-ribose) polymerase inhibitor ABT-888 and temozolomide in dual-drug targeted magnetic nanoparticles.
    Muñoz-Gámez JA; López Viota J; Barrientos A; Carazo Á; Sanjuán-Nuñez L; Quiles-Perez R; Muñoz-de-Rueda P; Delgado Á; Ruiz-Extremera Á; Salmerón J
    Liver Int; 2015 Apr; 35(4):1430-41. PubMed ID: 24821649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination of PARP and WEE1 inhibitors
    Lukoseviciute M; Theodosopoulou A; Holzhauser S; Dalianis T; Kostopoulou ON
    Oncol Rep; 2023 Jun; 49(6):. PubMed ID: 37144508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.