BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37910633)

  • 1. N-Site Regulation of Pyridyltriazole in Cp*Ir(N̂N)(H
    Ge S; Gong L; Yi P; Mo X; Liu C; Yi XY; He P
    Inorg Chem; 2023 Nov; 62(45):18375-18383. PubMed ID: 37910633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Ligand Cooperation in Cp*Ir-Pyridylpyrrole Complexes: Rational Design and Catalytic Activity in Formic Acid Dehydrogenation and CO
    Mo XF; Liu C; Chen ZW; Ma F; He P; Yi XY
    Inorg Chem; 2021 Nov; 60(21):16584-16592. PubMed ID: 34637291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps.
    Liu H; Wang WH; Xiong H; Nijamudheen A; Ertem MZ; Wang M; Duan L
    Inorg Chem; 2021 Mar; 60(5):3410-3417. PubMed ID: 33560831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative Effects of Heterodinuclear Ir
    Hong D; Shimoyama Y; Ohgomori Y; Kanega R; Kotani H; Ishizuka T; Kon Y; Himeda Y; Kojima T
    Inorg Chem; 2020 Sep; 59(17):11976-11985. PubMed ID: 32648749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic Effect of Pendant N Moieties for Proton Shuttling in the Dehydrogenation of Formic Acid Catalyzed by Biomimetic Ir
    Wang WH; Wang H; Yang Y; Lai X; Li Y; Wang J; Himeda Y; Bao M
    ChemSusChem; 2020 Sep; 13(18):5015-5022. PubMed ID: 32662920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Design for Catalytic Dehydrogenation of Formic Acid to Produce High-pressure Hydrogen Gas under Base-free Conditions.
    Kawanami H; Iguchi M; Himeda Y
    Inorg Chem; 2020 Apr; 59(7):4191-4199. PubMed ID: 32064868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formic Acid Dehydrogenation through Ligand Design Strategy of Amidation in Half-Sandwich Ir Complexes.
    Guo J; Li M; Yin C; Zhong D; Zhang Y; Li X; Wang Y; Yuan J; Xie H; Qi T
    Inorg Chem; 2023 Nov; 62(46):18982-18989. PubMed ID: 37939313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CO
    Fink C; Laurenczy G
    Dalton Trans; 2017 Jan; 46(5):1670-1676. PubMed ID: 28098294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight.
    Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic insights into HCO
    Wonglakhon T; Surawatanawong P
    Dalton Trans; 2018 Dec; 47(47):17020-17031. PubMed ID: 30460951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands.
    Johnee Britto N; Jaccob M
    J Phys Chem A; 2021 Nov; 125(43):9478-9488. PubMed ID: 34702035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand Effect on the Stability of Water-Soluble Iridium Catalysts for High-Pressure Hydrogen Gas Production by Dehydrogenation of Formic Acid.
    Iguchi M; Onishi N; Himeda Y; Kawanami H
    Chemphyschem; 2019 May; 20(10):1296-1300. PubMed ID: 30884093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the Deactivation Pathways of Iridium(III) Pyridine-Carboxiamide Catalysts for Formic Acid Dehydrogenation.
    Menendez Rodriguez G; Zaccaria F; Tensi L; Zuccaccia C; Belanzoni P; Macchioni A
    Chemistry; 2021 Jan; 27(6):2050-2064. PubMed ID: 33141938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Precisely Controlling Ancillary Ligands to Improve Catalysis of Cp*Ir Complexes for CO
    Mo XF; Ge S; Yi PP; Chen G; Liu JH; Liu C; Yi XY; He P
    Inorg Chem; 2023 Jul; 62(28):11225-11232. PubMed ID: 37401905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ammonia-Borane Dehydrogenation Catalyzed by Dual-Mode Proton-Responsive Ir-CNN
    Ortega-Lepe I; Rossin A; Sánchez P; Santos LL; Rendón N; Álvarez E; López-Serrano J; Suárez A
    Inorg Chem; 2021 Dec; 60(23):18490-18502. PubMed ID: 34784204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.