These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37910671)

  • 21. Enhanced Cavity Optomechanics with Quantum-Well Exciton Polaritons.
    Carlon Zambon N; Denis Z; De Oliveira R; Ravets S; Ciuti C; Favero I; Bloch J
    Phys Rev Lett; 2022 Aug; 129(9):093603. PubMed ID: 36083685
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breaking the phonon bottleneck in semiconductor nanocrystals via multiphonon emission induced by intrinsic nonadiabatic interactions.
    Schaller RD; Pietryga JM; Goupalov SV; Petruska MA; Ivanov SA; Klimov VI
    Phys Rev Lett; 2005 Nov; 95(19):196401. PubMed ID: 16384000
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum Light from Lossy Semiconductor Rydberg Excitons.
    Walther V; Sørensen AS
    Phys Rev Lett; 2023 Jul; 131(3):033607. PubMed ID: 37540885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and Properties of Strongly Quantum-Confined Cesium Lead Halide Perovskite Nanocrystals.
    Qiao T; Son DH
    Acc Chem Res; 2021 Mar; 54(6):1399-1408. PubMed ID: 33566565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strong Exciton-Photon Coupling with Colloidal Nanoplatelets in an Open Microcavity.
    Flatten LC; Christodoulou S; Patel RK; Buccheri A; Coles DM; Reid BP; Taylor RA; Moreels I; Smith JM
    Nano Lett; 2016 Nov; 16(11):7137-7141. PubMed ID: 27737546
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microcavity phonoritons - a coherent optical-to-microwave interface.
    Kuznetsov AS; Biermann K; Reynoso AA; Fainstein A; Santos PV
    Nat Commun; 2023 Sep; 14(1):5470. PubMed ID: 37723165
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes.
    Perebeinos V; Avouris P
    Phys Rev Lett; 2008 Aug; 101(5):057401. PubMed ID: 18764429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantum Zeno effect rationalizes the phonon bottleneck in semiconductor quantum dots.
    Kilina SV; Neukirch AJ; Habenicht BF; Kilin DS; Prezhdo OV
    Phys Rev Lett; 2013 May; 110(18):180404. PubMed ID: 23683182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress of Strong Exciton-Photon Coupling in Lead Halide Perovskites.
    Du W; Zhang S; Zhang Q; Liu X
    Adv Mater; 2019 Nov; 31(45):e1804894. PubMed ID: 30398690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of Confined Optical Phonons in Exciton Generation in Spherical Quantum Dot.
    Singh R; Dutta M; Stroscio MA
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.
    Nozik AJ
    Inorg Chem; 2005 Oct; 44(20):6893-9. PubMed ID: 16180844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher-Order Photon Correlation as a Tool To Study Exciton Dynamics in Quasi-2D Nanoplatelets.
    Amgar D; Yang G; Tenne R; Oron D
    Nano Lett; 2019 Dec; 19(12):8741-8748. PubMed ID: 31692360
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breaking the phonon bottleneck in PbSe and CdSe quantum dots: time-domain density functional theory of charge carrier relaxation.
    Kilina SV; Kilin DS; Prezhdo OV
    ACS Nano; 2009 Jan; 3(1):93-9. PubMed ID: 19206254
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Luminescence Fine Structures in Single Lead Halide Perovskite Nanocrystals: Size Dependence of the Exciton-Phonon Coupling.
    Cho K; Yamada T; Tahara H; Tadano T; Suzuura H; Saruyama M; Sato R; Teranishi T; Kanemitsu Y
    Nano Lett; 2021 Sep; 21(17):7206-7212. PubMed ID: 34415169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots.
    Nozik AJ
    Annu Rev Phys Chem; 2001; 52():193-231. PubMed ID: 11326064
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals.
    Hou L; Tamarat P; Lounis B
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33924196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polariton-Polariton Interactions Revealed in a One-dimensional Whispering Gallery Microcavity.
    Tian C; Zhou B; Xu C; Zhang Y; Zheng X; Zhang J; Zhang L; Dong H; Zhou W
    Nano Lett; 2020 Mar; 20(3):1552-1560. PubMed ID: 32097561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable phononic coupling in excitonic quantum emitters.
    Ripin A; Peng R; Zhang X; Chakravarthi S; He M; Xu X; Fu KM; Cao T; Li M
    Nat Nanotechnol; 2023 Sep; 18(9):1020-1026. PubMed ID: 37264087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.