These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 37910691)

  • 1. Improved active-tracking performance through Hadamard speckle contrast reduction.
    Jenkins EL; Burrell DJ
    Opt Lett; 2023 Nov; 48(21):5515-5518. PubMed ID: 37910691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally averaged speckle noise in wavefront sensors for beam projection in weak turbulence.
    Allan GW; Allured R; Ashcom J; Liu L; Cahoy K
    Appl Opt; 2021 Jun; 60(16):4723-4731. PubMed ID: 34143030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myopic aberrations: impact of centroiding noise in Hartmann Shack wavefront sensing.
    Akondi V; Vohnsen B
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):434-43. PubMed ID: 23786384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors.
    Thomas W; Middlebrook C
    J Mod Opt; 2014 Dec; 61(sup1):S74-S80. PubMed ID: 25705091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of active millimeter-wave image speckle reduction by Hadamard phase pattern illumination.
    Koers G; Ocket I; Feng Q; Tavakol V; Jäger I; Nauwelaers B; Stiens J
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):312-7. PubMed ID: 18246164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field.
    Almoro P; Pedrini G; Osten W
    Appl Opt; 2006 Dec; 45(34):8596-605. PubMed ID: 17119554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient ordering of the Hadamard basis for single pixel imaging.
    López-García L; Cruz-Santos W; García-Arellano A; Filio-Aguilar P; Cisneros-Martínez JA; Ramos-García R
    Opt Express; 2022 Apr; 30(8):13714-13732. PubMed ID: 35472978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional speckle-noise reduction by using coherent integral imaging.
    Moon I; Javidi B
    Opt Lett; 2009 Apr; 34(8):1246-8. PubMed ID: 19370132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-error correction in digital holography.
    Thurman ST; Fienup JR
    J Opt Soc Am A Opt Image Sci Vis; 2008 Apr; 25(4):983-94. PubMed ID: 18382499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort.
    Yu WK
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31548513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast wavefront sensing for X-ray optics with an alternating speckle tracking technique.
    Hu L; Wang H; Fox O; Sawhney K
    Opt Express; 2022 Aug; 30(18):33259-33273. PubMed ID: 36242370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing accuracy and precision of micro-coil localization in active-MR tracking.
    Daniels BR; Pratt R; Giaquinto R; Dumoulin C
    Magn Reson Imaging; 2016 Apr; 34(3):289-97. PubMed ID: 26612078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of diffuser grain size on the speckle tracking technique.
    Tian N; Jiang H; Li A; Liang D; Yan S; Zhang Z
    J Synchrotron Radiat; 2020 Jan; 27(Pt 1):146-157. PubMed ID: 31868747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalable High-Resolution Single-Pixel Imaging via Pattern Reshaping.
    Osicheva A; Sych D
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active-tracking scaling laws using the noise-equivalent angle due to speckle.
    Burrell DJ; Spencer MF; Beason MK; Driggers RG
    J Opt Soc Am A Opt Image Sci Vis; 2023 May; 40(5):904-913. PubMed ID: 37133187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of spatiotemporal averaging processes on the estimation of spectral reflectance in color digital holography using speckle illuminations.
    Funamizu H; Shimoma S; Yuasa T; Aizu Y
    Appl Opt; 2014 Oct; 53(30):7072-80. PubMed ID: 25402796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase and amplitude reconstruction in single-pixel transmission microscopy: a comparison of Hadamard, cosine, and noiselet bases.
    Santos-Amador A; Araiza-Esquivel M; González H; Rodríguez-Cobos A; Tajahuerce E; Martínez-León L; Ramírez-Flores G; Balderas-Navarro RE
    Appl Opt; 2021 Aug; 60(23):6935-6942. PubMed ID: 34613174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual shear wave induced laser speckle contrast signal and the improvement in shear wave speed measurement.
    Li S; Cheng Y; Eckersley RJ; Elson DS; Tang MX
    Biomed Opt Express; 2015 Jun; 6(6):1954-62. PubMed ID: 26114021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polychromatic wave-optics models for image-plane speckle. 2. Unresolved objects.
    Van Zandt NR; Spencer MF; Steinbock MJ; Anderson BM; Hyde MW; Fiorino ST
    Appl Opt; 2018 May; 57(15):4103-4110. PubMed ID: 29791383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.