BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37913555)

  • 1. FabV, the Unique Enoyl-Acyl Carrier Protein Reductase in
    Li F; Deng J; Zhang Z; Wang C; Mao Y
    Phytopathology; 2024 Apr; 114(4):780-791. PubMed ID: 37913555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of
    Retamales J; Núñez P; Alvarado R; Campan EDM; Otto T; Segovia C; Vasquez I; Santander J
    Viruses; 2022 Jun; 14(7):. PubMed ID: 35891361
    [No Abstract]   [Full Text] [Related]  

  • 3. Vibrio cholerae FabV defines a new class of enoyl-acyl carrier protein reductase.
    Massengo-Tiassé RP; Cronan JE
    J Biol Chem; 2008 Jan; 283(3):1308-1316. PubMed ID: 18032386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Arginine Synthesis Is Required for Full Virulence of
    Sagawa CHD; Assis RAB; Zaini PA; Saxe H; Wilmarth PA; Salemi M; Phinney BS; Dandekar AM
    Phytopathology; 2022 Jul; 112(7):1500-1512. PubMed ID: 34941365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase.
    Zhu L; Lin J; Ma J; Cronan JE; Wang H
    Antimicrob Agents Chemother; 2010 Feb; 54(2):689-98. PubMed ID: 19933806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Characterization of Triclosan-Resistant Enoyl-acyl-carrier Protein Reductase (FabV) in
    Huang YH; Lin JS; Ma JC; Wang HH
    Front Microbiol; 2016; 7():1903. PubMed ID: 27965638
    [No Abstract]   [Full Text] [Related]  

  • 7. Triclosan Resistance in a Bacterial Fish Pathogen, Aeromonas salmonicida subsp. salmonicida, is Mediated by an Enoyl Reductase, FabV.
    Khan R; Lee MH; Joo HJ; Jung YH; Ahmad S; Choi JH; Lee SW
    J Microbiol Biotechnol; 2015 Apr; 25(4):511-20. PubMed ID: 25370725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis.
    Dömötör D; Frank T; Rákhely G; Doffkay Z; Schneider G; Kovács T
    Infect Genet Evol; 2016 Sep; 43():371-7. PubMed ID: 27275846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xanthomonas arboricola pv. juglandis and pv. corylina: Brothers or distant relatives? Genetic clues, epidemiology, and insights for disease management.
    Kałużna M; Fischer-Le Saux M; Pothier JF; Jacques MA; Obradović A; Tavares F; Stefani E
    Mol Plant Pathol; 2021 Dec; 22(12):1481-1499. PubMed ID: 34156749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Secreted Chorismate Mutase from
    Assis RAB; Sagawa CHD; Zaini PA; Saxe HJ; Wilmarth PA; Phinney BS; Salemi M; Moreira LM; Dandekar AM
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocatechuic acid, ferulic acid and relevant defense enzymes correlate closely with walnut resistance to Xanthomonas arboricola pv. juglandis.
    Zhang Q; Li M; Yang G; Liu X; Yu Z; Peng S
    BMC Plant Biol; 2022 Dec; 22(1):598. PubMed ID: 36539704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Characterization of Xanthomonas arboricola pv. juglandis Causing Bacterial Blight of Walnuts in Korea.
    Kim HS; Cheon W; Lee Y; Kwon HT; Seo ST; Balaraju K; Jeon Y
    Plant Pathol J; 2021 Apr; 37(2):137-151. PubMed ID: 33866756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple DNA Markers for Identification of Xanthomonas arboricola pv. juglandis Isolates and its Direct Detection in Plant Samples.
    Fernandes C; Albuquerque P; Sousa R; Cruz L; Tavares F
    Plant Dis; 2017 Jun; 101(6):858-865. PubMed ID: 30682925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The two functional enoyl-acyl carrier protein reductases of Enterococcus faecalis do not mediate triclosan resistance.
    Zhu L; Bi H; Ma J; Hu Z; Zhang W; Cronan JE; Wang H
    mBio; 2013 Oct; 4(5):e00613-13. PubMed ID: 24085780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial exopolysaccharide EPS66A inducing walnut (Juglans regia) resistance to bacterial blight.
    Wu H; Sun Y; Ma L; Cheng S; Lv D; Hao J; Han L
    Food Chem; 2024 Mar; 435():137551. PubMed ID: 37801767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome Analysis of Walnut Bacterial Blight Disease.
    H D Sagawa C; de A B Assis R; Zaini PA; Wilmarth PA; Phinney BS; Moreira LM; Dandekar AM
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33050347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of
    Martins L; Fernandes C; Albuquerque P; Tavares F
    Plant Dis; 2019 Oct; 103(10):2577-2586. PubMed ID: 31347945
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparative Genomics of
    Fernandes C; Martins L; Teixeira M; Blom J; Pothier JF; Fonseca NA; Tavares F
    Microorganisms; 2021 Mar; 9(3):. PubMed ID: 33803052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of
    Rutherford JT; Avad K; Dureja C; Norseeda K; Gc B; Wu C; Sun D; Hevener KE; Hurdle JG
    ACS Infect Dis; 2024 May; 10(5):1612-1623. PubMed ID: 38597503
    [No Abstract]   [Full Text] [Related]  

  • 20. Genome-Wide Profiling and Phylogenetic Analysis of the
    Jiang S; Balan B; Assis RAB; Sagawa CHD; Wan X; Han S; Wang L; Zhang L; Zaini PA; Walawage SL; Jacobson A; Lee SH; Moreira LM; Leslie CA; Dandekar AM
    Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32070009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.