These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37913603)

  • 1. Emerging nonmodel eukaryotes for biofuel production.
    Hu L; Qiu H; Huang L; Zhang F; Tran VG; Yuan J; He N; Cao M
    Curr Opin Biotechnol; 2023 Dec; 84():103015. PubMed ID: 37913603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reassessing Escherichia coli as a cell factory for biofuel production.
    Wang C; Pfleger BF; Kim SW
    Curr Opin Biotechnol; 2017 Jun; 45():92-103. PubMed ID: 28292659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous utilization of cellobiose, xylose, and acetic acid from lignocellulosic biomass for biofuel production by an engineered yeast platform.
    Wei N; Oh EJ; Million G; Cate JH; Jin YS
    ACS Synth Biol; 2015 Jun; 4(6):707-13. PubMed ID: 25587748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology.
    Clomburg JM; Gonzalez R
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):419-34. PubMed ID: 20143230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced biofuel production in microbes.
    Peralta-Yahya PP; Keasling JD
    Biotechnol J; 2010 Feb; 5(2):147-62. PubMed ID: 20084640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering biofuel tolerance in non-native producing microorganisms.
    Jin H; Chen L; Wang J; Zhang W
    Biotechnol Adv; 2014; 32(2):541-8. PubMed ID: 24530635
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals.
    Kim HJ; Turner TL; Jin YS
    Biotechnol Adv; 2013 Nov; 31(6):976-85. PubMed ID: 23562845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and microbial production of a terpene-based advanced biofuel.
    Peralta-Yahya PP; Ouellet M; Chan R; Mukhopadhyay A; Keasling JD; Lee TS
    Nat Commun; 2011 Sep; 2():483. PubMed ID: 21952217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing microbial production of biofuels by expanding microbial metabolic pathways.
    Yu P; Chen X; Li P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):606-619. PubMed ID: 27507087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast synthetic biology toolbox and applications for biofuel production.
    Tsai CS; Kwak S; Turner TL; Jin YS
    FEMS Yeast Res; 2015 Feb; 15(1):1-15. PubMed ID: 25195615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Principles and practice of designing microbial biocatalysts for fuel and chemical production.
    Shanmugam KT; Ingram LO
    J Ind Microbiol Biotechnol; 2022 Apr; 49(2):. PubMed ID: 33686428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose.
    Oh EJ; Jin YS
    FEMS Yeast Res; 2020 Feb; 20(1):. PubMed ID: 31917414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of microbial pathways for advanced biofuels production.
    Zhang F; Rodriguez S; Keasling JD
    Curr Opin Biotechnol; 2011 Dec; 22(6):775-83. PubMed ID: 21620688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineered microbial platforms for biomass-derived biofuel production - A review.
    Lu H; Yadav V; Zhong M; Bilal M; Taherzadeh MJ; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 2):132528. PubMed ID: 34637864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial design of a highly efficient xylose-utilizing pathway in Saccharomyces cerevisiae for the production of cellulosic biofuels.
    Kim B; Du J; Eriksen DT; Zhao H
    Appl Environ Microbiol; 2013 Feb; 79(3):931-41. PubMed ID: 23183982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
    Sharma J; Kumar V; Prasad R; Gaur NA
    Biotechnol Adv; 2022; 56():107925. PubMed ID: 35151789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production.
    Liu Z; Ho SH; Sasaki K; den Haan R; Inokuma K; Ogino C; van Zyl WH; Hasunuma T; Kondo A
    Sci Rep; 2016 Apr; 6():24550. PubMed ID: 27079382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast.
    Wei N; Quarterman J; Kim SR; Cate JH; Jin YS
    Nat Commun; 2013; 4():2580. PubMed ID: 24105024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering strategy of yeast metabolism for higher alcohol production.
    Matsuda F; Furusawa C; Kondo T; Ishii J; Shimizu H; Kondo A
    Microb Cell Fact; 2011 Sep; 10():70. PubMed ID: 21902829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling.
    Chen Y; Wu Y; Zhu B; Zhang G; Wei N
    PLoS One; 2018; 13(6):e0199104. PubMed ID: 29940003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.