These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37913690)
1. A novel approach for the resource utilization of zinc-bearing dust and sludge via the blast furnace main trough. Wei R; Zhang F; Wang X; Meng D; Meng K; Long H Waste Manag; 2023 Dec; 172():127-139. PubMed ID: 37913690 [TBL] [Abstract][Full Text] [Related]
2. Toward environmentally friendly direct reduced iron production: A novel route of comprehensive utilization of blast furnace dust and electric arc furnace dust. Ye L; Peng Z; Ye Q; Wang L; Augustine R; Perez M; Liu Y; Liu M; Tang H; Rao M; Li G; Jiang T Waste Manag; 2021 Nov; 135():389-396. PubMed ID: 34610538 [TBL] [Abstract][Full Text] [Related]
3. Process and mechanism of preparing metallized blast furnace burden from metallurgical dust and sludge. Gao X; Chai Y; Wang Y; Luo G; An S; Peng J Sci Rep; 2024 Apr; 14(1):9760. PubMed ID: 38684847 [TBL] [Abstract][Full Text] [Related]
4. Effect of Oily Sludge Treatment with Molten Blast Furnace Slag on the Mineral Phase Reconstruction of Water-Quenched Slag Properties. Qin Y; Zhang K; Wu X; Ling Q; Hu J; Li X; Liu H Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885440 [TBL] [Abstract][Full Text] [Related]
5. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel. Drobíková K; Plachá D; Motyka O; Gabor R; Kutláková KM; Vallová S; Seidlerová J Waste Manag; 2016 Feb; 48():471-477. PubMed ID: 26684056 [TBL] [Abstract][Full Text] [Related]
6. Effect of the Acidity Coefficient on the Properties of Molten Modified Blast Furnace Slag and Those of the Produced Slag Fibers. Du P; Zhang Y; Long Y; Xing L Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591446 [TBL] [Abstract][Full Text] [Related]
7. Research on modified blast furnace dust in demulsification: The synergistic effect of ferric oxide, hydrophobic carbon, and polysilicate. Zhang Y; Li M; Huang W; Fan K; Li J; Zhong M; Li Z; Li C; Zhang Q J Air Waste Manag Assoc; 2022 May; 72(5):403-419. PubMed ID: 35113008 [TBL] [Abstract][Full Text] [Related]
8. Research on Reduction of Selected Iron-Bearing Waste Materials. Mróz J; Konstanciak A; Warzecha M; Więcek M; Hutny AM Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921233 [TBL] [Abstract][Full Text] [Related]
9. Detoxication and recycling of chromium slag and C-bearing dust via composite agglomeration process (CAP)-blast furnace method. Tu Y; Su Z; Zhang Y; Jiang T Waste Manag; 2023 Sep; 171():227-236. PubMed ID: 37666148 [TBL] [Abstract][Full Text] [Related]
10. Temperature Measurement Method for Blast Furnace Molten Iron Based on Infrared Thermography and Temperature Reduction Model. Pan D; Jiang Z; Chen Z; Gui W; Xie Y; Yang C Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404156 [TBL] [Abstract][Full Text] [Related]
11. Selective separation of zinc and iron/carbon from blast furnace dust via a hydrometallurgical cooperative leaching method. Luo X; Wang C; Shi X; Li X; Wei C; Li M; Deng Z Waste Manag; 2022 Feb; 139():116-123. PubMed ID: 34959087 [TBL] [Abstract][Full Text] [Related]
12. Acidic leaching both of zinc and iron from basic oxygen furnace sludge. Trung ZH; Kukurugya F; Takacova Z; Orac D; Laubertova M; Miskufova A; Havlik T J Hazard Mater; 2011 Sep; 192(3):1100-7. PubMed ID: 21724325 [TBL] [Abstract][Full Text] [Related]
13. An efficient approach to utilize copper smelting slag: Separating nonferrous metals and reducing iron oxide at high temperature. Wu L; Li H; Liu K; Mei H; Xia Y; Dong Y Waste Manag; 2023 Dec; 172():182-191. PubMed ID: 37922838 [TBL] [Abstract][Full Text] [Related]
14. Treatment of chromium-containing sludge using sintering and ironmaking combined technology: A risk-reducing strategy for environmental impact. Fan S; Wei J; Xu X; Yan R; Li Q; Liu Y; Huang Y; Wang Y; Fan G; Zhang L J Environ Manage; 2024 May; 359():120986. PubMed ID: 38696849 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic modelling of the formation of zinc-manganese ferrite spinel in electric arc furnace dust. Pickles CA J Hazard Mater; 2010 Jul; 179(1-3):309-17. PubMed ID: 20356673 [TBL] [Abstract][Full Text] [Related]
16. Recycling of blast-furnace sludge by thermochemical treatment with spent iron(II) chloride solution from steel pickling. Hamann C; Spanka M; Stolle D; Auer G; Weingart E; Al-Sabbagh D; Ostermann M; Adam C J Hazard Mater; 2021 Jan; 402():123511. PubMed ID: 33254735 [TBL] [Abstract][Full Text] [Related]
17. Experimental investigation on sludge dewatering using granulated blast furnace slag as skeleton material. Ramachandra RH; Devatha CP Environ Sci Pollut Res Int; 2020 Apr; 27(11):11870-11881. PubMed ID: 31981030 [TBL] [Abstract][Full Text] [Related]
18. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag. Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588 [TBL] [Abstract][Full Text] [Related]
19. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash. Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235 [TBL] [Abstract][Full Text] [Related]