These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 37913734)

  • 1. The role of hydrogen therapy in Alzheimer's disease management: Insights into mechanisms, administration routes, and future challenges.
    He J; Liu F; Xu T; Ma J; Yu H; Zhao J; Xie Y; Luo L; Yang Q; Lou T; He L; Sun D
    Biomed Pharmacother; 2023 Dec; 168():115807. PubMed ID: 37913734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen metabolism abnormality and Alzheimer's disease: An update.
    Liu G; Yang C; Wang X; Chen X; Wang Y; Le W
    Redox Biol; 2023 Dec; 68():102955. PubMed ID: 37956598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of mitochondrial dysfunction, oxidative stress and autophagy in progression of Alzheimer's disease.
    Bhatia V; Sharma S
    J Neurol Sci; 2021 Feb; 421():117253. PubMed ID: 33476985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathological Impacts of Chronic Hypoxia on Alzheimer's Disease.
    Zhang F; Niu L; Li S; Le W
    ACS Chem Neurosci; 2019 Feb; 10(2):902-909. PubMed ID: 30412668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amyloid Beta and Phosphorylated Tau-Induced Defective Autophagy and Mitophagy in Alzheimer's Disease.
    Reddy PH; Oliver DM
    Cells; 2019 May; 8(5):. PubMed ID: 31121890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer's disease mice.
    Xie Y; Tan Y; Zheng Y; Du X; Liu Q
    J Biol Inorg Chem; 2017 Aug; 22(6):851-865. PubMed ID: 28502066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting autophagy in Alzheimer's disease: Animal models and mechanisms.
    Zhang XW; Zhu XX; Tang DS; Lu JH
    Zool Res; 2023 Nov; 44(6):1132-1145. PubMed ID: 37963840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis.
    Teixeira JP; de Castro AA; Soares FV; da Cunha EFF; Ramalho TC
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31816853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Management of oxidative stress and other pathologies in Alzheimer's disease.
    Simunkova M; Alwasel SH; Alhazza IM; Jomova K; Kollar V; Rusko M; Valko M
    Arch Toxicol; 2019 Sep; 93(9):2491-2513. PubMed ID: 31440798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AMPK: Potential Therapeutic Target for Alzheimer's Disease.
    Yang L; Jiang Y; Shi L; Zhong D; Li Y; Li J; Jin R
    Curr Protein Pept Sci; 2020; 21(1):66-77. PubMed ID: 31424367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reducing Aβ load and tau phosphorylation: Emerging perspective for treating Alzheimer's disease.
    Kalra J; Khan A
    Eur J Pharmacol; 2015 Oct; 764():571-581. PubMed ID: 26209363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the classical amyloid hypothesis in Alzheimer's disease: Molecular insights into current concepts of pathogenesis, therapeutic targets, and study models.
    Theerasri A; Janpaijit S; Tencomnao T; Prasansuklab A
    WIREs Mech Dis; 2023 Mar; 15(2):e1591. PubMed ID: 36494193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer's Disease.
    Rai SN; Singh C; Singh A; Singh MP; Singh BK
    Mol Neurobiol; 2020 Jul; 57(7):3075-3088. PubMed ID: 32462551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the therapeutic potential of natural compounds for Alzheimer's disease: Mechanisms of action and pharmacological properties.
    Liu J; Li T; Zhong G; Pan Y; Gao M; Su S; Liang Y; Ma C; Liu Y; Wang Q; Shi Q
    Biomed Pharmacother; 2023 Oct; 166():115406. PubMed ID: 37659206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrocortisone Mitigates Alzheimer's-Related Cognitive Decline through Modulating Oxidative Stress and Neuroinflammation.
    Li J; Chen L; Liu S; Sun Y; Zhen L; Zhu Z; Wang G; Li X
    Cells; 2023 Sep; 12(19):. PubMed ID: 37830561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Intimate Insights into the Role of Hydrogen Sulfide in Alzheimer's Disease: A Recent Systematic Review.
    Munteanu C; Iordan DA; Hoteteu M; Popescu C; Postoiu R; Onu I; Onose G
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease.
    Liu Z; Li T; Li P; Wei N; Zhao Z; Liang H; Ji X; Chen W; Xue M; Wei J
    Oxid Med Cell Longev; 2015; 2015():352723. PubMed ID: 26171115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Tau Protein on Mitochondrial Functions.
    Epremyan KK; Goleva TN; Zvyagilskaya RA
    Biochemistry (Mosc); 2022 Aug; 87(8):689-701. PubMed ID: 36171651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer's Disease?
    Hindle A; Singh SP; Pradeepkiran JA; Bose C; Vijayan M; Kshirsagar S; Sawant NA; Reddy PH
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of Alzheimer's disease: From therapeutic targets to promising drugs.
    Alan E; Kerry Z; Sevin G
    Fundam Clin Pharmacol; 2023 Jun; 37(3):397-427. PubMed ID: 36576325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.